Skip to main content
Log in

Effect of Cultivar on Sensory Characteristics, Chemical Composition, and Nutritional Value of Stoned Green Table Olives

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of olive cultivar on sensory characteristics, chemical composition, and nutritional value of traditional stoned green table olives “alcaparras” was studied. The most representative cultivars from Trás-os-Montes region, Portugal (Cv. Cobrançosa, Madural, Negrinha de Freixo, Santulhana, and Verdeal Transmontana) were studied. The results showed that, regardless the cultivar, water was the main constituent with values greater than 70%, followed by fat that varied between 12.5% and 20.1%. Carbohydrates amount was greater in Cv. Madural (9.2%) and those produced from Cv. Cobrançosa had higher level of nitrogenous compounds, with 1.4%. Ashes contents of table olives varied from 1.6% to 1.9%, without significant differences among cultivars. Moreover, 100 g of “alcaparras” provided an energetic value between 154 and 212 kcal for Cv. Madural and Verdeal Transmontana, respectively. Oleic acid was the main fatty acid detected (higher than 66.9%), followed by palmitic acid (10.8–13.3%) and linoleic acid (2.7–10.3%). A linear discriminant model was established based on the “alcaparras” table olives fatty acids profile. Three fatty acids (C16:0, C18:0, and C18:3) and total saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids contents allowed distinguishing between the five olive cultivars studied, with overall sensitivity and specificity of 100%. The total content of vitamin E of the table olives varied from 3.5 and 6.0 mg/kg (for Cv. Santulhana and Negrinha de Freixo, respectively), being α-tocopherol the most abundant. The consumer’s panel showed higher preference for the table olives of Cv. Verdeal Transmontana and Negrinha de Freixo, while Cv. Madural was negatively characterized in all the descriptors evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajana, H., El Antari, A., & Hafidi, A. (1999). Evolution of biometric parameters and chemical composition of olives from the Moroccan Picholine variety during fruit ripeness. Grasas y Aceites, 50, 1–6.

    Article  CAS  Google Scholar 

  • Amaral, J. S., Casal, S., Oliveira, M. B., & Seabra, R. M. (2005). Development and evaluation of a normal phase liquid chromatographic method for the determination of tocopherols and tocotrienols in walnuts. Journal of Liquid Chromatography and Related Technologies, 28, 785–795.

    Article  CAS  Google Scholar 

  • Angerosa, F., Servili, M., Selvaggini, R., Taticchi, A., Esposto, S., & Montedoro, G. (2004). Volatile compounds in virgin olive oil: occurrence and their relationship with the quality. Journal of Chromatography A, 1054, 17–31.

    CAS  Google Scholar 

  • AOAC. (1995). Official methods of analysis (16th ed.). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • AOAC (2000) Official methods of Analysis of AOAC international, 17th ed. In W. Horwitz (ed.). AOAC: Arlington, VA, vol. II (1–3).

  • Aparicio, R., Morales, M. T., & Alonso, M. V. (1996). Relationships between volatile compounds and sensory attributes of olive oils by the sensory wheel. Journal of the American Oil Chemists’ Society, 73, 1253–1264.

    Article  CAS  Google Scholar 

  • Armstrong, N., Paganga, G., Brunev, E., & Miller, N. (1997). Reference values for α-tocopherol and β-carotene in the Whitehall II study. Free Radical Research, 27, 207–219.

    Article  CAS  Google Scholar 

  • Beltrán, G., Jiménez, A., del Rio, C., Sánchez, S., Martínez, L., Uceda, M., et al. (2010). Variability of vitamin E in virgin olive oil by agronomical and genetic factors. Journal of Food Composition and Analysis, 23, 633–639.

    Article  Google Scholar 

  • Brenes, M., Rejano, L., García, P., Sánchez, A. H., & Garrido, A. (1995). Biochemical changes in phenolic compounds during Spanish-style green olive processing. Journal of Agricultural and Food Chemistry, 43, 2702–2706.

    Article  CAS  Google Scholar 

  • Brescia, M. A., Pugliese, T., Hardy, E., & Sacco, A. (2007). Compositional and structural investigations of ripening of table olives, Bella della Daunia, by means of traditional and magnetic resonance imaging analyses. Food Chemistry, 105, 400–404.

    Article  CAS  Google Scholar 

  • Cunha, S., Amaral, J. S., Fernandes, J. O., & Oliveira, M. B. P. P. (2006). Quantification of tocopherols and tocotrienols in Portuguese olive oils using HPLC with three different detection systems. Journal of Agricultural and Food Chemistry, 54, 3351–3356.

    Article  CAS  Google Scholar 

  • Di Bella, G., Maisano, R., La Pera, L., Lo Turco, V., Salvo, F., & Dugo, G. (2007). Statistical characterization of Sicilian olive oils from the Pelotirana and Maghrebian zones according to the fatty acid profile. Journal of Agricultural and Food Chemistry, 55, 6568–6574.

    Article  Google Scholar 

  • Gómez, A. H. S., García, P. G., & Navarro, L. R. (2006). Trends in table olives production. Elaboration of table olives. Grasas y Aceites, 57, 86–94.

    Google Scholar 

  • Hooper, L., Bartlett, C., Smith, G. D., & Ebrahim, S. (2002). Systematic review of long term effects of advice to reduce dietary salt in adults. British Medical Journal, 325, 628–632.

    Article  Google Scholar 

  • ISO 5508 (1990). Animal and vegetable fats and oils. Analysis by gas chromatography of methyl esters of fatty acids.

  • ISO 5509 (2000) Animal and vegetable fats and oils—preparation of methyl esters of fatty acids.

  • ISO 9936 (2006) Animal and vegetable fats and oils—determination of tocopherol and tocotrienol contents by high-performance liquid chromatography.

  • Kailis, S., & Harris, D. (2007). Producing table olives. Collingwood: Landlinks Press.

    Google Scholar 

  • Kastorini, C. M., Milionis, H. J., Goudevenos, J. A., & Panagiotakos, D. B. (2010). Mediterranean diet and coronary heart disease: is obesity a link?—a systematic review. Nutrition, Metabolism, and Cardiovascular Diseases, 20, 536–551.

    Article  CAS  Google Scholar 

  • Kiritsakis, A. K. (1998). Flavor components of olive oil—a review. Journal of the American Oil Chemists’ Society, 75, 673–681.

    Article  CAS  Google Scholar 

  • Lanza, B., Di Serio, M. G., Iannucci, E., Russi, F., & Marfisi, P. (2010). Nutritional, textural and sensorial characterisation of Italian table olives (Olea europaea L. cv. ‘Intosso d’Abruzzo’). International Journal of Food Science & Technology, 45, 67–74.

    Article  CAS  Google Scholar 

  • Lin, P., Chen, Y., & He, Y. (2009). Identification of geographical origin of olive oil using visible and near-infrared spectroscopy technique combined with chemometrics. Food Bioprocess and Technology. doi:10.1007/s11947-009-0302-z.

    Google Scholar 

  • López, A., García, P., & Garrido, A. (2008). Multivariate characterization of table olives according to their mineral nutrient composition. Food Chemistry, 106, 369–378.

    Article  Google Scholar 

  • Luna, G., Morales, M. T., & Aparicio, R. (2006). Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chemistry, 98, 243–252.

    Article  CAS  Google Scholar 

  • Maggio, R. M., Kaufman, T. S., Del Carlo, M., Cerretani, L., Bendini, A., Cichelli, A., et al. (2009). Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares. Food Chemistry, 114, 1549–1554.

    Article  CAS  Google Scholar 

  • Marsilio, V., Campestre, C., & Lanza, B. (2001). Phenolic compounds change during California-style ripe olives processing. Food Chemistry, 74, 55–60.

    Article  CAS  Google Scholar 

  • McLennan, P. L. (1993). Relative effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on cardiac arrhythmias in rats. The American Journal of Clinical Nutrition, 57, 207–212.

    CAS  Google Scholar 

  • Montaño, A., Casado, F. J., Castro, A., Sánchez, A. H., & Rejano, L. (2005). Influence of processing, storage time, and pasteurization upon the tocopherol and amino acid contents of treated green table olives. European Food Research and Technology, 220, 255–260.

    Article  Google Scholar 

  • Owen, R. W., Haubner, R., Würtele, G., Hull, W. E., Spiegelhalder, B., & Bartsch, H. (2004). Olives and olive oil in cancer prevention. European Journal of Cancer Prevention, 13, 319–326.

    Article  CAS  Google Scholar 

  • Pereira, J. A., Casal, S., Bento, A., & Oliveira, M. B. P. P. (2002). Influence of olive storage period on oil quality of three Portuguese cultivars of Olea europea, Cobrançosa, Madural and Verdeal Transmontana. Journal of Agricultural and Food Chemistry, 50, 6335–6340.

    Article  CAS  Google Scholar 

  • Pereira, J. A., Alves, R., Casal, S., & Oliveira, M. B. P. P. (2004). Effect of olive fruit fly infestation on the quality of olive oil from cultivars Cobrançosa, Madural and Verdeal Transmontana. Italian Journal of Food Science, 16, 355–365.

    CAS  Google Scholar 

  • Ranalli, A., Marchegiani, D., Pardi, D., Contento, S., Pardi, D., Girardi, F., et al. (2009). Evaluation of functional phytochemicals in destined virgin olive oil. Food and Bioprocess Technology, 2, 322–327.

    Article  CAS  Google Scholar 

  • Regulation (EEC) (1991) No 2568/91 on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis, from the Commission, from 11 July of the year 1991.

  • Rencher, A. C. (1995). Methods of multivariate analysis. New York: Willey.

    Google Scholar 

  • Romero, C., Brenes, M., García, P., García, A., & Garrido, A. (2004). Polyphenol changes during fermentation of naturally black olives. Journal of Agricultural and Food Chemistry, 52, 1973–1979.

    Article  CAS  Google Scholar 

  • Sabatini, N., Mucciarella, M. R., & Marsilio, V. (2008). Volatile compounds in uninoculated and inoculated table olives with Lactobacillus plantarum (Olea europaea, L., cv. Moresca and Kalamata). LWT–Food Science and Technology, 41, 2017–2022.

    CAS  Google Scholar 

  • Sabatini, N., Perri, E., & Marsilio, V. (2009). An investigation on molecular partition of aroma compounds in fruit matrix and brine medium of fermented table olives. Innovative Food Scence and Emerging Technologies, 10, 621–626.

    Article  CAS  Google Scholar 

  • Sakouhi, F., Harrabi, S., Absalon, C., Sbei, K., Boukhchina, S., & Kallel, H. (2008). α-Tocopherol and fatty acids contents of some Tunisian table olives (Olea europea L.): changes in their composition during ripening and processing. Food Chemistry, 108, 833–839.

    Article  CAS  Google Scholar 

  • Schröder, H. (2007). Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. The Journal of Nutritional Biochemistry, 18, 149–160.

    Article  Google Scholar 

  • Sousa, A., Ferreira, I. C. F. R., Calhelha, R. C., Andrade, P. B., Valentão, P., Seabra, R., et al. (2006). Phenolics and antimicrobial activity of traditional stoned table olives “Alcaparras”. Bioorganic & Medicinal Chemistry, 14, 8533–8538.

    Article  CAS  Google Scholar 

  • Sousa, A., Ferreira, I. C. F. R., Barros, L., Bento, A., & Pereira, J. A. (2008). Effect of solvent and extraction temperatures on the antioxidant potential of traditional stoned table olives “Alcaparras”. LWT Food Science and Technology, 41, 739–745.

    Article  CAS  Google Scholar 

  • Ullrich, F., & Grosch, W. (1988). Identification of the most intense odor compounds formed during autoxidation of methyl linolenate at room temperature. Journal of the American Oil Chemists’ Society, 65(8), 1313–1317.

    Article  CAS  Google Scholar 

  • Ünal, K., & Nergiz, C. (2003). The effect of table olives preparing methods and storage on the composition and nutritive value of olives. Grasas y Aceites, 54, 71–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alberto Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malheiro, R., Casal, S., Sousa, A. et al. Effect of Cultivar on Sensory Characteristics, Chemical Composition, and Nutritional Value of Stoned Green Table Olives. Food Bioprocess Technol 5, 1733–1742 (2012). https://doi.org/10.1007/s11947-011-0567-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0567-x

Keywords

Navigation