Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 4, pp 1220–1227 | Cite as

Effects of Different Wall Materials on the Physicochemical Properties and Oxidative Stability of Spray-Dried Microencapsulated Red-Fleshed Pitaya (Hylocereus polyrhizus) Seed Oil

  • Hong-Kwong Lim
  • Chin-Ping TanEmail author
  • Jamilah Bakar
  • Siou-Pei Ng
Original Paper

Abstract

The aim of this research was to investigate the influence of the composition of the wall material on the encapsulation and stability of microencapsulated red-fleshed pitaya seed oil. Hylocereus polyrhizus seed oil was homogenized with various wall material solutions at a core/wall material ratio of 0.33 and was microencapsulated by spray-drying. The microstructure and morphology of pitaya seed oil powder (PSOP) were observed using a scanning electron microscope (SEM). PSOP encapsulated with gum Arabic exhibited a lower degree of microencapsulation efficiency (MEE; 77.61–85.3%) compared to PSOP encapsulated with proteinaceous bases (90.12–98.06%). The study on oil retention revealed that sodium caseinate > whey protein > gum Arabic as effective wall materials for pitaya seed oil encapsulation. The effects of different wall systems on the oxidation stability of PSOP were studied under accelerated storage conditions; the peroxide value (POV) was determined throughout the test interval at several storage times. This study indicates that the use of lactose as wall material is able to increase the oxidation stability of PSOP; however, further research is needed to evaluate its antioxidative retention toward the oxidative stability of PSOP.

Keywords

Dragon fruit Hylocereus polyrhizus Pitaya Seed oil Microencapsulation Spray-drying Lipid oxidation 

Notes

Acknowledgments

This research work was supported by Universiti Putra Malaysia (RUGS Project No. 90009).

References

  1. Ahn, J. H., Kim, Y. P., Lee, Y. M., Seo, E. M., Lee, K. M., & Kim, H. S. (2008). Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry, 107, 98–105.CrossRefGoogle Scholar
  2. Anker, M. H. & Reineccius, G. A. (1988). Encapsulated orange oil: Influence of spray-dryer air temperatures on retention and shelf life. In: S.J. Risch and G.A. Reineccius, Editors, Flavor encapsulation, ACS Symp. Ser. No. vol. 370, 78–85Google Scholar
  3. AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists. (1973). Association of Official Analytical Chemists, ArlingtonGoogle Scholar
  4. AOCS, Official Methods and Recommended Practices of the American Oil Chemists’ Society. (1993). 4th edn., edited by D. Firestone, AOCS Press, Champaign, IL.Google Scholar
  5. Barbeau, G. C. (1990). La pitahaya rouge, un nouveau fruit exotique (The red pitahaya, a new exotic fruit). Fruits, 45, 141–147.Google Scholar
  6. Bhandari, B. R., Dumoulin, E. D., Richard, H. M. J., Noleau, I., & Lebert, A. M. (1992). Flavor encapsulation by spray drying: application to citral and linalyl acetate. Journal of Food Science, 57, 217–221.CrossRefGoogle Scholar
  7. Cerdeira, M., Palazolo, G. G., Candal, R. J., & Herrera, M. L. (2007). Factors affecting initial retention of a microencapsulated sunflower seed oil/milk fat fraction blend. Journal of the American Oil Chemists' Society, 84, 523–531.CrossRefGoogle Scholar
  8. Chang, Y. I., Scire, J. & Jacobs, B. (1988). Effect of particle and microstructure properties on encapsulated orange oil. In: S.J. Risch and G.A. Reineccius, Editors, Flavor encapsulation, ACS Symp. Ser. No. vol. 370, pp. 87–102Google Scholar
  9. Cheah, L. S., & Zulkarnain, W. M. (2008). National pitaya acreage (2002–2006). In: Status of pitaya cultivation in Malaysia. Malaysia: Department of AgricultureGoogle Scholar
  10. Collares, F. P., Finzer, J. R. D., & Kieckbusch, T. G. (2004). Glass transition control of the detachment of food pastes dried over glass plates. Journal of Food Engineering, 61, 261–267.CrossRefGoogle Scholar
  11. Drusch, S. (2007). Sugar beet pectin: a novel emulsifying wall component for microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocolloids, 21(7), 1223–1228.CrossRefGoogle Scholar
  12. Dzondo-Gadet, M., Nzikou, J. M., Etoumongob, A., Linder, M., & Desobry, S. (2005). Encapsulation and storage of safou pulp oil in 6DE maltodextrins. Process Biochemistry, 40, 265–271.CrossRefGoogle Scholar
  13. Faldt, P., & Bergenstahl, B. (1995). Fat encapsulation in spray-dried food powders. Journal of the American Oil Chemists’ Society, 72(2), 171–176.CrossRefGoogle Scholar
  14. Fang, X., Shima, M., & Adachi, S. (2005). Effects of drying conditions on the oxidation of linoleic acid encapsulated with gum Arabic by spray-drying. Food Science and Technology Research, 11, 380–384.CrossRefGoogle Scholar
  15. Frankel, E. N. (1993). In search for better methods to evaluate natural antioxidants and oxidative stability in food lipids. Trends in Food Science and Technology, 4, 220–225.CrossRefGoogle Scholar
  16. Frankel, E. N. (1998). Lipid oxidation. Ayr, UK: Oily Press.Google Scholar
  17. Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40, 1107–1121.CrossRefGoogle Scholar
  18. Gordon, M. H. (1991). Oils and fats: taints or flavor. Chemistry in Britain (November), 1020–1022.Google Scholar
  19. Gordon, M. H., & Mursi, E. (1994). A comparison of oil stability based on Metrohm Rancimat with storage 20°C. Journal of the American Oil Chemists' Society, 71, 649–651.CrossRefGoogle Scholar
  20. Hogan, S. A., McNamee, B. F., O’Riordan, E. D., & O’Sullivan, M. (2001). Microencapsulating properties of sodium caseinate. Journal of Agricultural and Food Chemistry, 49, 1934–1938.CrossRefGoogle Scholar
  21. Jaya, S., & Das, H. (2009). Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders. Food and Bioprocess Technology, 2, 89–95.CrossRefGoogle Scholar
  22. Jing, H., Yap, M., Wong, P. Y. Y., & Kitts, D. D. (2009). Comparison of physicochemical and antioxidant properties of egg-white proteins and fructose and inulin Maillard reaction products. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0279-7.Google Scholar
  23. Keogh, M. K., & O’Kennedy, B. T. (1999). Milk fat microencapsulation using whey proteins. International Dairy Journal, 9, 657–663.CrossRefGoogle Scholar
  24. Kneifel, W., & Seiler, A. (1993). Water-holding properties of milk protein products—a review. Food Structure, 12, 297–308.Google Scholar
  25. Lim, H. K., Tan, C. P., Karim, R., Ariffin, A. A., & Bakar, J. (2010). Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chemistry, 119, 1326–1331.CrossRefGoogle Scholar
  26. Mancebo-Campos, V., Salvador, M. D., & Fregapane, G. (2007). Comparative study of virgin olive oil behavior under Rancimat accelerated oxidation conditions and long-term room temperature storage. Journal of Agricultural and Food Chemistry, 55, 8231–8236.CrossRefGoogle Scholar
  27. McNamee, B. F., O’Riordan, E. D., & O’Sullivan, M. (1998). Emulsification and microencapsulation properties of gum Arabic. Journal of Agriculture and Food Chemistry, 46, 4551–4555.CrossRefGoogle Scholar
  28. Moreau, D., & Rosenberg, M. (1993). Microstructure and fat extractability in microcapsules based on whey proteins or mixtures of whey proteins and lactose. Food Structure, 12, 457.Google Scholar
  29. Nelson, K.A., & Labuza, T.P. (1992). Relationship between water and lipid oxidation rates. In “Lipid Oxidation in Food (ACS Symposium Series 500)”, ed. St. Angelo, A.J., American Chemical Society, Washington DC, Ch. 6, pp. 93–103.Google Scholar
  30. Pauletti, M. S., & Amestoy, P. (1999). Butter microencapsulation as affected by composition of wall material and fat. Journal of Food Science, 64, 279–282.CrossRefGoogle Scholar
  31. Pont, E. G. (1955). A de-emulsification technique for use in the peroxide test on the fat of milk, cream, concentrated and dried milks. Australian Journal of Dairy Technology, 10, 72–75.Google Scholar
  32. Serfert, Y., Drusch, S., & Schwarz, K. (2009). Chemical stabilisation of oils rich in long-chain polyunsaturated fatty acids during homogenisation, microencapsulation and storage. Food Chemistry, 113, 1106–1112.CrossRefGoogle Scholar
  33. Sliwinski, E. L., Lavrijsen, B. W. M., Vollenbroek, J. M., van der Stege, H. J., Van Boekel, M. A. J. S., & Wouters, J. T. M. (2003). Effects of spray drying on physicochemical properties of milk protein stabilised emulsions. Colloid and Surface B, 31, 219–229.CrossRefGoogle Scholar
  34. Vega, C., & Roos, Y. H. (2006). Invited review: spray-dried dairy and dairy-like emulsions—compositional considerations. Journal of Dairy Science, 89, 383–401.CrossRefGoogle Scholar
  35. Velasco, J., Dobarganes, M. C., & Márquez-Ruiz, G. (2000). Application of the accelerated test Rancimat to evaluate oxidative stability of dried microencapsulated oils. Grasas y Aceites, 51, 261–267.Google Scholar
  36. Velasco, J., Dobarganes, M. C., & Márquez-Ruiz, G. (2003). Variables affecting lipid oxidation in dried microencapsulated oils. Grasas y Aceites, 54, 304–314.CrossRefGoogle Scholar
  37. Velasco, J., Marmesat, S., Dobarganes, C., & Márquez-Ruiz, G. (2006). Heterogeneous aspects of lipid oxidation in dried microencapsulated oils. Journal of Agricultural and Food Chemistry, 54, 1722–1729.CrossRefGoogle Scholar
  38. Velasco, J., Dobarganes, C., Holgado, F., & Márquez-Ruiz, G. (2009). A follow-up oxidation study in dried microencapsulated oils under the accelerated conditions of Rancimat test. Food Research International, 42, 56–62.CrossRefGoogle Scholar
  39. Wanasundara, U. N., & Shahidi, F. (1998). Stabilization of marine oils with flavonoids. Journal of Food Lipids, 5, 183–196.CrossRefGoogle Scholar
  40. Wu, L. C., Hsu, H. W., Chen, Y. C., Chiu, C. C., Lin, Y. I., & Ho, J. A. (2006). Antioxidant and antiproliferative activities of red pitaya. Food Chemistry, 95, 319–327.CrossRefGoogle Scholar
  41. Wybraniec, S., & Mizrahi, Y. (2002). Fruit flesh betacyanin pigments in Hylocereus cacti. Journal of Agricultural and Food Chemistry, 50, 6086–6089.CrossRefGoogle Scholar
  42. Young, S. L., Sarda, X., & Rosenberg, M. (1993a). Microencapsulating properties of whey proteins. 1. Microencapsulation of anhydrous milk fat. Journal of Dairy Science, 76, 2868–2877.CrossRefGoogle Scholar
  43. Young, S. L., Sarda, X., & Rosenberg, M. (1993b). Microencapsulating properties of whey proteins. 2. Combination of whey proteins with carbohydrates. Journal of Dairy Science, 76, 2878–2885.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Hong-Kwong Lim
    • 1
  • Chin-Ping Tan
    • 1
    Email author
  • Jamilah Bakar
    • 1
  • Siou-Pei Ng
    • 1
  1. 1.Department of Food Technology, Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations