Determination of Calcium Content in Powdered Milk Using Near and Mid-Infrared Spectroscopy with Variable Selection and Chemometrics

Abstract

Near infrared (NIR) and mid-infrared (MIR) spectroscopy techniques were evaluated to determine calcium content in powdered milk. A hybrid spectral variable selection algorithm combined with uninformation variable elimination (UVE) and successive projections algorithm (SPA) selected 11 NIR and 15 MIR variables from full 2,756 NIR and 3,727 MIR variables, respectively. Predicted results of least-squares support vector machine models for the samples in the prediction set show that the 15 MIR variables obtained much better results (0.930 for coefficient of determination (r 2), 3.703 for residual predictive deviation (RPD), 30.162 for root mean square error of prediction set (RMSEP) and 5.22% for relative errors of prediction (RSEP)) than 11 NIR variables did (0.636 for r 2, 1.587 for RPD, 78.815 for RMSEP, and 13.40% for RSEP). The overall results indicate that MIR spectroscopy could be applied as a precision and rapid method to determine calcium content in powdered milk. The good performance shows a potential application using UVE-SPA to select NIR and MIR effective variables.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig 2
Fig. 3
Fig. 4

References

  1. Alexandrakis, D., Downey, G., & Scannell, A. G. M. (2009). Rapid non-destructive detection of spoilage of intact chicken breast muscle using near-infrared and Fourier transform mid-infrared spectroscopy and multivariate statistics. Food and Bioprocess Technology. doi:10.1007/s11947-009-0298-4. in press.

    Google Scholar 

  2. Alvarez, M., Mazo-Gray, V., Alvarez, M., & Mazo-Gray, V. (2005). Determination of potassium and calcium in powdered milk by energy-dispersive X-ray fluorescence spectrometry. X-Ray Spectrometry, 19(6), 285–287.

    Article  Google Scholar 

  3. AOAC (2000). Official methods of analysis 17th Ed. Method 965.17. Maryland: The Association of Official Analytical Chemists

  4. Araujo, M. C. U., Saldanha, T. C. B., Galvao, R. K. H., Yoneyama, T., Chame, H. C., & Visani, V. (2001). The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 57(2), 65–73.

    Article  CAS  Google Scholar 

  5. Berridge, M. J. (1975). The interaction of cyclic nucleotides and calcium in the control of cellular activity. Advances in Cyclic Nucleotide Research, 6, 1–98.

    CAS  Google Scholar 

  6. Bokobza, L. (1998). Near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 6(1998), 3–17781.

    Article  CAS  Google Scholar 

  7. Borin, A., Ferrao, M. F., Mello, C., Maretto, D. A., & Poppi, R. J. (2006). Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytica Chimica Acta, 579(1), 25–32.

    Article  CAS  Google Scholar 

  8. Byler, D. M., & Farrell, H. M. (1989). Infrared spectroscopic evidence for calcium-ion interaction with carboxylate groups of casein. Journal of Dairy Science, 72(7), 1719–1723.

    Article  CAS  Google Scholar 

  9. Centner, V., Massart, D. L., deNoord, O. E., deJong, S., Vandeginste, B. M., & Sterna, C. (1996). Elimination of uninformative variables for multivariate calibration. Analytical Chemistry, 68(21), 3851–3858.

    Article  CAS  Google Scholar 

  10. Chauchard, F., Cogdill, R., Roussel, S., Roger, J. M., & Bellon-Maurel, V. (2004). Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes. Chemometrics and Intelligent Laboratory Systems, 71(2), 141–150.

    Article  CAS  Google Scholar 

  11. Chen, K. L., & Jiang, S. J. (2002). Determination of calcium, iron and zinc in milk powder by reaction cell inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 470(2), 223–228.

    Article  CAS  Google Scholar 

  12. Downey, G. (1998). Food and food ingredient authentication by mid-infrared spectroscopy and chemometrics. TrAC, Trends in Analytical Chemistry, 17(7), 418–424.

    Article  CAS  Google Scholar 

  13. Hitti IKA & Thomas JDR. (1985). Ion-selective electrode determination of calcium and potassium in bovine skim-milk powder. Analytical Letters Part a-Chemical Analysis, 18(8), 975–983.

    Google Scholar 

  14. Hu, X., Toyoda, K., Yamanoue, M., Ihara, I., & Nakai, K. (2010). Evaluation of fatty acid profile of wagyu beef by ATR-FTIR spectroscopy. Food and Bioprocess Technology, 3(6), 883–891.

    Article  CAS  Google Scholar 

  15. Jouanrimbaud, D., Massart, D. L., Leardi, R., & Denoord, O. E. (1995). Genetic algorithms as a tool for wavelength selection in multivariate calibration. Analytical Chemistry, 67(23), 4295–4301.

    Article  CAS  Google Scholar 

  16. Kalivas, J. H., Roberts, N., & Sutter, J. M. (1989). Global optimization by simulated annealing with wavelength selection for ultraviolet visible spectrophotometry. Analytical Chemistry, 61(18), 2024–2030.

    Article  CAS  Google Scholar 

  17. Karoui, R., & De Baerdemaeker, J. (2007). A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chemistry, 102(3), 621–640.

    Article  CAS  Google Scholar 

  18. Karoui, R., Dufour, E., Pillonel, L., Schaller, E., Picque, D., Cattenoz, T., et al. (2005). The potential of combined infrared and fluorescence spectroscopies as a method of determination of the geographic origin of emmental cheeses. International Dairy Journal, 15(3), 287–298.

    Article  CAS  Google Scholar 

  19. Kennard, R. W., & Stone, L. A. (1969). Computer aided design of experiments. Technometrics, 11(1), 137.

    Article  Google Scholar 

  20. Mesubi, M. A. (1982). An infrared study of zinc, cadmium, and lead salts of some fatty-acids. Journal of Molecular Structure, 81(1–2), 61–71.

    Article  CAS  Google Scholar 

  21. Nara, M., & Tanokura, M. (2008). Infrared spectroscopic study of the metal-coordination structures of calcium-binding proteins. Biochemical and Biophysical Research Communications, 369(1), 225–239.

    Article  CAS  Google Scholar 

  22. Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., et al. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology, 46(2), 99–118.

    Article  Google Scholar 

  23. Reid, L. M., Woodcock, T., O’Donnell, C. P., Kelly, J. D., & Downey, G. (2005). Differentiation of apple juice samples on the basis of heat treatment and variety using chemometric analysis of MIR and NIR data. Food Research International, 38(10), 1109–1115.

    Article  CAS  Google Scholar 

  24. Roychoudhury, P., Harvey, L. M., & McNeil, B. (2006). At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy. Analytica Chimica Acta, 561(1–2), 218–224.

    Article  CAS  Google Scholar 

  25. Upreti, P., & Metzger, L. E. (2006). Utilization of Fourier transform infrared spectroscopy for measurement of organic phosphorus and bound calcium in cheddar cheese. Journal of Dairy Science, 89(6), 1926–1937.

    Article  CAS  Google Scholar 

  26. Williams, P. C. (2001). Near-infrared technology in the agricultural and food industries. Saint Paul: American Association of Cereal Chemists.

    Google Scholar 

  27. Wilson, R. H., & Tapp, H. S. (1999). Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods. TrAC, Trends in Analytical Chemistry, 18(2), 85–93.

    Article  CAS  Google Scholar 

  28. Woodcock, T., Fagan, C. C., O’Donnell, C. P., & Downey, G. (2008). Application of near and mid-infrared spectroscopy to determine cheese quality and authenticity. Food and Bioprocess Technology, 1(2), 117–129.

    Article  Google Scholar 

  29. Wu, D., Feng, S., & He, Y. (2007). Infrared spectroscopy technique for the nondestructive measurement of fat content in milk powder. Journal of Dairy Science, 90(8), 3613–3619.

    Article  CAS  Google Scholar 

  30. Wu, D., Feng, S., & He, Y. (2008a). Short-wave near-infrared spectroscopy of milk powder for brand identification and component analysis. Journal of Dairy Science, 91(3), 939–949.

    Article  CAS  Google Scholar 

  31. Wu, D., He, Y., & Feng, S. (2008b). Short-wave near-infrared spectroscopy analysis of major compounds in milk powder and wavelength assignment. Analytica Chimica Acta, 610(2), 232–242.

    Article  CAS  Google Scholar 

  32. Wu, D., He, Y., Feng, S. J., & Sun, D. W. (2008c). Study on infrared spectroscopy technique for fast measurement of protein content in milk powder based on LS-SVM. Journal of Food Engineering, 84(1), 124–131.

    Article  CAS  Google Scholar 

  33. Wu, D., Yang, H. Q., Chen, X. J., He, Y., & Li, X. L. (2008d). Application of image texture for the sorting of tea categories using multi-spectral imaging technique and support vector machine. Journal of Food Engineering, 88(4), 474–483.

    Article  Google Scholar 

  34. Wu, D., Chen, X. J., Shi, P. Y., Wang, S. H., Feng, F. Q., & He, Y. (2009a). Determination of alpha-linolenic acid and linoleic acid in edible oils using near-infrared spectroscopy improved by wavelet transform and uninformative variable elimination. Analytica Chimica Acta, 634(2), 166–171.

    Article  CAS  Google Scholar 

  35. Wu, D., Wu, H. X., Cai, J. B., Huang, Z. H., & He, Y. (2009b). Classifying the species of exopalaemon by using visible and near infrared spectra with uninformative variable elimination and successive projections algorithm. Journal of Infrared and Millimeter Waves, 28(6), 423–427.

    Article  Google Scholar 

  36. Wu, D., He, Y., Nie, P. C., Cao, F., & Bao, Y. D. (2010). Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice. Analytica Chimica Acta, 659(1–2), 229–237.

    Article  CAS  Google Scholar 

  37. Ye, S. F., Wang, D., & Min, S. G. (2008). Successive projections algorithm combined with uninformative variable elimination for spectral variable selection. Chemometrics and Intelligent Laboratory Systems, 91(2), 194–199.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (31072247), Zhejiang Provincial Natural Science Foundation of China (Y3100205), the Fundamental Research Funds for the Central Universities, and the Open Foundation of Zhejiang Key Lab of Exploitation and Preservation of Coastal Bioresource (J2010001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong He.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, D., Nie, P., He, Y. et al. Determination of Calcium Content in Powdered Milk Using Near and Mid-Infrared Spectroscopy with Variable Selection and Chemometrics. Food Bioprocess Technol 5, 1402–1410 (2012). https://doi.org/10.1007/s11947-010-0492-4

Download citation

Keywords

  • Near infrared (NIR) spectroscopy
  • Mid-infrared (MIR) spectroscopy
  • Calcium
  • Powdered milk
  • Uninformation variable elimination (UVE)
  • Successive projections algorithm (SPA)