Bioactivity of Lemon Balm Kombucha

Abstract

There is inadequate published data referring to bioactivity of lemon balm tea and its Kombucha. The aim of this study, therefore, was to investigate antimicrobial, antiproliferative, genotoxic, and antigenotoxic potential of lemon balm tea and its Kombucha with consuming acidity. Antimicrobial activity was determined by agar-well diffusion method. Cell growth effects were determined in HeLa, MCF7, and HT-29 human tumor cell lines. Genotoxic and antigenotoxic effects were determined using chromosome aberration assay in Chinese hamster cell line CHO-K1. Differences between control and treated groups were evaluated using analysis of variance, at significance level of p < 0.05. Kombucha from lemon balm tea (Melissa officinalis L.) exibited antimicrobial activity against prokaryotic microorganisms independently of their cell wall structure (both Gram-positive and Gram-negative bacteria), while there was no observed activity against eukaryots (yeasts and moulds). There was absence of genotoxic effects while antigenotoxic effects of lemon balm Kombucha and tea were confirmed on MMC-damaged CHO-K1 cells. For the explanation of cell growth effects that were not concentration dependent, concept of hormesis was used. Antiproliferative activity was lower compared with traditional Kombucha and Satureja montana L. Kombucha, with lemon balm tea showing higher activity than its Kombucha.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ATCC:

American type culture collection

CA:

Chromosome aberration

CHO-K1:

Chinese hamster ovary cell line

DET:

Dye exclusion test

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

Ethylenediaminetetraacetic acid

FCS:

Fetal calf serum

HeLa:

Human cervix cancer cell line

HT-29:

Human colon cancer cell line

IC50 :

Concentration that inhibits cell growth by 50%

MCF7:

Human breast cancer cell line

MMC:

Mitomycin C

PBS:

Phosphate buffer solution

RPMI-1640:

Roswell Park Memorial Institute medium

SRB:

Sulforhodamine B

TCA:

Trichloroacetic acid, TRIS-tris(hydroxymethyl)aminomethane

References

  1. Blanc, P. J. (1996). Characterization of the tea fungus metabolites. Biotechnology Letters, 18, 139–142.

    Article  CAS  Google Scholar 

  2. Calabrese, E. J. (2005). Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environmental Pollution, 138, 378–411.

    Article  CAS  Google Scholar 

  3. Calabrese, E. J., & Baldwin, L. A. (2001a). The scientific foundation of hormesis. Critical Reviews in Toxicology, 31, 349–391.

    Google Scholar 

  4. Calabrese, E. J., & Baldwin, L. A. (2001b). Agonist concentration gradients as a generalizable regulatory implementation strategy. Critical Reviews in Toxicology, 31, 471–474.

    Article  CAS  Google Scholar 

  5. Canadanovic-Brunet, J., Cetkovic, G., Djilas, S., Tumbas, V., Bogdanovic, G., Mandic, A., et al. (2008). Radical scavenging, antibacterial, and antiproliferative activities of Melissa officinalis L. extracts. Journal of Medicinal Food, 11(1), 133–143.

    Article  Google Scholar 

  6. Cetojevic Simin, D. D., Bogdanovic, G. M., Cvetkovic, D. D., & Velicanski, A. S. (2008). Antiproliferative and antimicrobial activity of traditional Kombucha and Satureja montana L. Kombucha. Journal of Balkan Union of Oncology, 13(2), 395–401.

    CAS  Google Scholar 

  7. Chu, S.-C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98(3), 502–507.

    Article  CAS  Google Scholar 

  8. Cvetkovic, D. (2008). Kombucha made from medical herbs—biological activity and fermentation parameters. Ph.D. thesis, Faculty of Technology, University of Novi Sad, Republic of Serbia.

  9. Cvetkovic, D., Markov, S., Djuric, M., Savic, D., & Velicanski, A. (2008). Specific interfacial area as a key variable in scaling-up Kombucha fermentation. Journal of Food Engineering, 85, 387–392.

    Article  Google Scholar 

  10. Dastmalchi, K., Dorman, H. J. D., Oinonen, P. P., Darwis, Y., Laakso, I., & Hiltunen, R. (2008). Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. Lwt-food Science and Technology (Lebensmittel-Wissenschaft und Technologie), 41(3), 391–400.

    Article  CAS  Google Scholar 

  11. Ertürk, O. (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia, 61(3), 275–278.

    Article  Google Scholar 

  12. Freshney, R. I. (2005). Culure of animal cells: A manual of basic technique (5th ed., pp. 335–358). New York: Wiley.

    Google Scholar 

  13. Greenwalt, C. J., Ledford, R. A., & Steinkraus, K. H. (1998). Determination and characterization of the antimicrobial activity of the fermented tea Kombucha. Lwt-food Science and Technology (Lebensmittel-Wissenschaft und Technologie), 31, 291–296.

    Article  CAS  Google Scholar 

  14. Greenwalt, C. J., Steinkraus, K. H., & Ledford, R. A. (2000). Kombucha, the fermented tea: microbiology, composition, and claimed health effects. Journal of Food Protection, 63, 976–981.

    CAS  Google Scholar 

  15. Hoffmann, N. (1998). Basic Building Blocks, Nutrients and Growth Factors, What the Kombucha culture needs to survive. Available at: www.kombu.de/nutrient.htm. Accessed 20 January 2009.

  16. Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: mechanism of action. The Journal of Nutrition, 134, 3479–3485.

    Google Scholar 

  17. Liu, C. H., Hsu, W. H., Lee, F. L., & Liao, C. C. (1996). The isolation and identification of microbes from fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13, 407–415.

    Article  Google Scholar 

  18. López, V., Martín, S., Gómez-Serranillos, M. P., Carretero, M. E., Jäger, A. K., & Calvo, M. I. (2009). Neuroprotective and neurological properties of Melissa officinalis. Neurochemical Research, 34(11), 1955–1956.

    Article  Google Scholar 

  19. Lorge, E., Thybaud, V. A., Oliver, J. M., Wakata, A., Lorenzon, G., & Marzin, D. (2006). SFTG international collaborative study on in vitro micronucleus test I. General conditions and overall conclusions of the study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 607(1), 13–36.

    Article  CAS  Google Scholar 

  20. Ludovico, P., Sansonetty, F., Silva, M. T., & Corte-Real, M. (2003). Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. Federation of European Microbiological Societies Yeast Research, 3, 91–96.

    CAS  Google Scholar 

  21. Malbasa, R. V., Milanovic, S. D., Loncar, E. S., Djuric, M. S., Caric, M. D., Ilicic, M. D., et al. (2009). Milk-based beverages obtained by Kombucha application. Food Chemistry, 112, 178–184.

    Article  CAS  Google Scholar 

  22. Markov, S. L., Malbaša, R. V., Hauk, M. J., & Cvetković, D. D. (2001). Investigation of tea fungus microbe associations I The Yeasts. Acta Periodica Technologica, 32, 133–138.

    CAS  Google Scholar 

  23. Mayo, W. J. (1998). Chemical methods of control: Antimicrobial drugs. In T. R. Johnson & C. L. Case (Eds.), Laboratory experiments in microbiology (5th ed., pp. 179–181). San Francisco: The Benjamin/Cummings Publishing Company.

    Google Scholar 

  24. Mayser, P., Fromme, S., Leitzmann, C., & Gründer, K. (1995). The yeast spectrum of tea fungus kombucha. Mycoses, 38(7–8), 289–295.

    Article  CAS  Google Scholar 

  25. Mimica-Dukic, N., Bozin, B., Sokovic, M., & Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. Journal of Agricultural and Food Chemistry, 52, 2485–2489.

    Article  CAS  Google Scholar 

  26. Mrdjanovic, J., Bogdanovic, G., Cvetkovic, D., Velicanski, A., & Cetojevic-Simin, D. (2007). The frequency of sister chromatide exchange and micronuclei in evaluation of cytogenetic activity of Kombucha on human peripheral blood lymphocytes. Archive of Oncology, 15(3–4), 85–88.

    Article  Google Scholar 

  27. Office Internationale de la vinge et du vin (OIV) (1990). Recuiel des methodes internationales d' analyse des vins et des monts. Paris. pp. 155–159.

  28. Pereira, P., Tysca, D., Oliveira, P., da Silva Brum, L. F., Picada, J. N., & Ardenghi, P. (2005). Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacological Research, 52(3), 199–203.

    Article  CAS  Google Scholar 

  29. Pritsos, C. A., & Sartorelli, C. A. (1986). Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics. Cancer Research, 46, 3528–3532.

    CAS  Google Scholar 

  30. Roussin, M. R. (1996). Analyses of Kombucha ferments: report on growers, Information Resources. LC, Salt Lake City, Utah. Available at: www.kombucha-research.com. Accessed 11 February 2010

  31. Savage, J. R. K. (1975). Classification and relationships of induced chromosomal structural changes. Journal of Medical Genetics, 12, 103–122.

    Google Scholar 

  32. Sievers, M., Lanini, C., Weber, A., & Schuler-Schmid, U. (1995). Microbiology and fermentation balance in a Kombucha beverage obtained from a tea fungus fermentation. Systematic and Applied Microbiology, 18, 590–594.

    Article  Google Scholar 

  33. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., et al. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82, 1107–1112.

    Article  CAS  Google Scholar 

  34. Snustad, D. P., & Simmons, M. J. (2001). Fundamentos de Genética. Rio de Janeiro: Guanabara Koogan.

    Google Scholar 

  35. Sreeramulu, G., Zhu, Y., & Knol, W. (2000). Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry, 48, 2589–2594.

    Article  CAS  Google Scholar 

  36. Sreeramulu, G., Zhu, Y., & Knol, W. (2001). Characterization of antimicrobial activity in Kombucha fermentation. Acta Biotechnologica, 21(1), 49–56.

    Article  CAS  Google Scholar 

  37. Stangler Herodez, S., Hadolin, M., Skerget, M., & Knez, Z. (2003). Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chemistry, 80, 275–282.

    Article  Google Scholar 

  38. Steinkraus, K. H., Shapiro, K. B., Hotchkiss, J. H., & Mortlock, R. P. (1996). Investigations into the antibiotic activity of tea fungus/kombucha beverage. Acta Biotechnologica, 16(2–3), 199–205.

    Article  Google Scholar 

  39. Teoh, A. L., Heard, G., & Cox, J. (2004). Yeast ecology of Kombucha fermentation. International Journal of Food Microbiology, 95, 119–126.

    Article  CAS  Google Scholar 

  40. Velicanski, A. (2008). Characteristics of Kombucha fermentation on medicinal herbs from Lamiaceae family. MS Thesis. Faculty of Technology, University of Novi Sad, Republic of Serbia

  41. Verma, R. S., & Babu, A. (1995). Human chromosomes, principles and techniques (2nd ed.). New York: McGraw-Hill Inc, Health Professions Division.

    Google Scholar 

  42. Yang, J., & Liu, R. H. (2009). Synergistic effect of apple extracts and quercetin 3-ß-d-glucoside combination of antiproliferative activity in MCF-7 human breast cancer cells in vitro. Journal of Agricultural and Food Chemistry, 57, 8581–8586.

    Article  CAS  Google Scholar 

  43. Yogesh, B., Kain, A. K., Pauline, T., Anju, B., Sairam, M., Singh, B., et al. (2003). Lead induced oxidative stress: beneficial effects of Kombucha tea. Biomedical and Envirolmental Sciences, 16(3), 276–282.

    Google Scholar 

  44. Yoshida, T., Kondo, T., Ogawa, R., Feril, L. B., Zhao, Q. L., Watanabe, A., et al. (2008). Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemotherapy and Pharmacology, 61(4), 559–567.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support by the Ministry of Science and Technology of Republic of Serbia (Project No. 23011) is greatly acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dragana D. Četojević-Simin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Četojević-Simin, D.D., Velićanski, A.S., Cvetković, D.D. et al. Bioactivity of Lemon Balm Kombucha. Food Bioprocess Technol 5, 1756–1765 (2012). https://doi.org/10.1007/s11947-010-0458-6

Download citation

Keywords

  • Antimicrobial activity
  • Cell growth activity
  • Chromosome aberration assay
  • Kombucha
  • Melissa officinalis L.
  • Tea