Advertisement

Food and Bioprocess Technology

, Volume 4, Issue 6, pp 1020–1028 | Cite as

Solvent Free Microwave-Assisted Extraction of Antioxidants from Sea Buckthorn (Hippophae rhamnoides) Food By-Products

  • Sandrine Périno-Issartier
  • Zill-e-Huma
  • Maryline Abert-Vian
  • Farid ChematEmail author
Original Paper

Abstract

After processing, every extraction process generates huge amount of unintended wastes, especially from fruits and vegetables which represent a major disposal problem for the food industry. They are promising sources of bioactive compounds that could be used for their favourable nutritional properties. Sea buckthorn juice production results in generation of large amount of by-products, which are suggested to contain substantial amounts of valuable natural antioxidants. Extracts obtained by solvent-free microwave hydrodiffusion and gravity (MHG) technique and conventional solvent extraction (CSE) method were analysed with HPLC for quantification of flavonoids along with evaluating their phenolic contents by Folin-Ciocalteu method and reducing power by the reduction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. MHG is a green extraction method which offers important advantages like shorter extraction time (15 min), cleaner feature (no solvent or water used) and extraction of valuable flavonoids (Isorhamnetin, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-rutinoside and quercetin 3-O-glucoside) at optimised power (400 W). Along with extracting similar flavonols in enough concentratioin, MHG extract has shown much higher phenolic contents (1,147 milligram gallic acid equivalents (GAE) per gram) against CSE extract (741 mg GAE/g) with greater antioxidant activity determined by DPPH assay.

Keywords

Sea buckthorn By-products Microwave Solvent free Extraction Antioxidants 

References

  1. Abert-Vian, M., Fernandez, X., Visinoni, F., & Chemat, F. (2008). Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. Journal of Chromatography A, 1190, 14–17.CrossRefGoogle Scholar
  2. Arimboor, R., Kumar, K. S., & Arumughan, C. (2008). Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD. Journal of Pharmaceutical and Biomedical Analysis, 47, 31–38.CrossRefGoogle Scholar
  3. Bélanger, J. M. R., & Paré, J. R. J. (2008) Microwave-assisted processes in food analysis. Handbook of Food Analysis Instruments, S, Ötles, Ed., Taylor & Francis–CRC Press.Google Scholar
  4. Beveridge, T., Li, T. S.-C., Dave, O.-B., & Smith, A. (1999). Sea buckthorn products: manufacture and composition. Journal of Agriculture and Food Chemistry, 47, 3480–3488.CrossRefGoogle Scholar
  5. Bilaloglu, G.-V., Gul, M., & Yildirim, A. (2004). Hippophaë rhamnoides L.: chromatographic to determine chemical composition, use in traditional medicine and pharmacological effects. Journal of Chromatography B, 812, 291–307.Google Scholar
  6. Chemat, F., Lucchesi, M. E., Smadja, J., Favretto, L., Colnaghi, G., & Visinoni, F. (2006). Microwave accelerated steam distillation of essential oil from lavender: a rapid, clean and environmentally friendly approach. Analytica Chimica Acta, 555, 157–160.CrossRefGoogle Scholar
  7. Chen, C., Zhang, H., Xiao, W., Yong, Z.-P., & Bai, N. (2007). High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries. Journal of Chromatography A, 1154, 250–259.CrossRefGoogle Scholar
  8. Craveiro, A. A., Matos, F. J. A., Alencar, J. W., & Plumel, M. M. (1989). Microwave extraction of an essential oil. Flavour Fragrance Journal, 4, 43–44.CrossRefGoogle Scholar
  9. Diouf, P. N., Stevanovic, T., & Cloutier, A. (2009). Study on chemical composition, antioxidant and anti-inflammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions. Food Chemistry, 113, 897–902.CrossRefGoogle Scholar
  10. Dufour, C., Loonis, M., & Dangles, O. (2007). Inhibition of the peroxidation of linoleic acid by the flavonoid quercetin with in their complex with human serum albumin. Free Radical Biology & Medicine, 43, 241–252.CrossRefGoogle Scholar
  11. Ercisli, S., Orhan, E., Ozdemir, O., & Sengul, M. (2007). The genotypic effects on the chemical composition and antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries grown in Turkey. Scientia Horticulturae, 115, 27–33.CrossRefGoogle Scholar
  12. Ferhat, M. A., Meklati, B. Y., Smadja, J., & Chemat, F. (2006). An improved microwave Clevengervapparatus for distillation of essential oils from orange peel. Journal of Chromatography A, 1112, 121–126.CrossRefGoogle Scholar
  13. Ferhat, M. A., Tigrine-Kordjani, N., Chemat, S., Meklati, B. Y., & Chemat, F. (2007). Rapid extraction of volatile compounds using a new simultaneous microwave distillation: solvent extraction device. Chromatographia, 65, 217–222.CrossRefGoogle Scholar
  14. Ganzler, K., Salgo, A., & Valko, K. (1986). Microwave extraction: a novel sample preparation method for chromatography. Journal of Chromatography A, 371, 299–306.CrossRefGoogle Scholar
  15. Khiari, Z., Makris, D. P., & Kefalas, P. (2009). An investigation on the recovery of antioxidant phenolics from onion solid wastes employing water/ethanol-based solvent systems. Food and Bioprocess Technology, 2, 337–343. doi: 10.1007/s11947-007-0044-8.CrossRefGoogle Scholar
  16. Lettelier, M., & Budzinski, H. (1999). Microwave assisted extraction of organic compounds. Analusis, 27, 259–270.CrossRefGoogle Scholar
  17. Lucchesi, M. E., Chemat, F., & Smadja, J. (2004). Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. Journal of Chromatography A, 1043, 323–327.CrossRefGoogle Scholar
  18. Mengal, P., & Mompon, B. (1996). Method and apparatus for solvent free microwave extraction of natural products. Eur. Pat. P. EP 698 076 B1.Google Scholar
  19. Monzocco, L., Anese, M., & Nicoli, M. C. (1998). Antioxidant properties of tea extracts as affected by processing. Lebensmittel-Wissenschaft und Technologie, 31, 694–698.CrossRefGoogle Scholar
  20. Paré, J. R. J., & Bélanger, J. M. R. (1997). Microwave-assisted process: principles and applications. In J. R. J. Paré & J. M. R. Bélanger (Eds.), Instrumental methods in food analysis (Vol. 18). Amsterdam: Elsevier Science.Google Scholar
  21. Patras, A., Brunton, N. P., Tiwari, B. K., & Butler, F. (2009). Stability and degradation kinetics of bioactive compounds and colour in strawberry jam during storage. Food and Bioprocess Technology. doi: 10.1007/s11947-009-0226-7.Google Scholar
  22. Rosch, D., Krumbein, A., & Kroh, L.-W. (2004). Antioxidant gallocatechins, dimeric and trimeric proanthocyanidins from sea buckthorn (Hippophae rhamnoides) pomace. European Food Research and Technology, 219, 605–613.CrossRefGoogle Scholar
  23. Sahraoui, N., Abert-Vian, M., Bornard, I., Boutekdjiret, C., & Chemat, F. (2008). Improved microwave steam distillation appatus for isolation of essential oils: Comparison with conventional steam distillation. Journal of Chromatography A, 1210, 229–233.CrossRefGoogle Scholar
  24. Sajfrtova, M., Lickova, L., Wimmerova, M., Sovova, H., & Wimmer, Z. (2010). β-Sitosterol: supercritical carbon dioxide extraction from Sea Buckthorn (Hippophaë rhamnoides L.) Seeds. International Journal of Molecular Science, 11, 1842–1850.CrossRefGoogle Scholar
  25. Sharma, U.-K., Sharma, K., Sharma, N., Singh, H.-P., & Sinha, A.-K. (2008). Microwave-assisted efficient extraction of different parts of Hippophaë rhamnoids for the comparative evaluation of antioxidant activity and qualification of its phenolic constituents by reverse-phase high performance liquid chromatography. Journal of Agriculture and Food Chemistry, 56, 374–379.CrossRefGoogle Scholar
  26. Stashenko, E. E., Jaramillo, B. E., & Martinez, J. R. (2004). Comparison of different extraction methods for the analysis of volatile secondary metabolites of Lippia alba (Mill.) N.E. Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity. Journal of Chromatography A, 1025, 93–103.CrossRefGoogle Scholar
  27. Upendra, K., Kapril, S., Nnandini, S., & Abhishe, S. (2008). Microwave-assisted efficient extraction of different parts of Hippophaë rhamnoides for the comparative evaluation of antioxidant activity and quantification of its phenolic constituents by RP- HPLC. Journal of Agriculture and Food Chemistry, 56, 374–379.CrossRefGoogle Scholar
  28. Vinson, J. A., & Hontz, B. A. (1995). Phenol antioxidant index: comparative antioxidant effectiveness of red and white wines. Journal of Agriculture and Food Chemistry, 43, 401–403.CrossRefGoogle Scholar
  29. Yuangang, Z., Chunying, L., Yujie, F., & Chunying, Z. (2006). Simultaneous determination of catechin, rutin, quercetin, kaempferol and isorhamnetin in the extraction of sea buchthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. Journal of Pharmaceutical and Biomedical Analysis, 41, 714–719.CrossRefGoogle Scholar
  30. Zill-e-Huma, Abert-Vian M., Mangonnat, J. F., & Chemat, F. (2009). Clean recovery of antioxidant flavonoids from onions: optimising solvent free microwave extraction method. Journal of Chromatography A, 1216, 7700–7707.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Sandrine Périno-Issartier
    • 1
  • Zill-e-Huma
    • 1
  • Maryline Abert-Vian
    • 1
  • Farid Chemat
    • 1
    Email author
  1. 1.Université d’Avignon et des Pays de Vaucluse, INRAAvignonFrance

Personalised recommendations