Skip to main content
Log in

The Efficiency of Temperature-Shift Strategy to Improve the Production of α-Amylase by Bacillus sp. in a Solid-State Fermentation System

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The performance of temperature-shift strategies on the production of α-amylase by Bacillus sp. in solid-state fermentation systems was investigated. Switching the temperature from an initial set point (37 °C, 40 °C, or 45 °C) to 28 °C increased the production of α-amylase significantly in all treatments, with different rates. The effects of having a constant incubation temperature and performing the temperature-shift operation from higher to lower temperatures (37 °C, 40 °C, or 45 °C) to 32 °C and vice versa were also studied. The results showed that the α-amylase biosynthesis could successfully be improved by shifting the incubation temperature from 40 °C for the initial 20 h of fermentation to 32 °C after a span of 20–48 h. An enhancement of 29.5% in the production of α-amylase after 48 h was recorded compared to the treatment that was shifted from 37 °C to 32 °C. This finding is particularly attractive for large-scale industrial fermentation from an economic point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antoine, A. A., Jacqueline, D., & Thonart, P. (2010). Xylanase production by Penicillium canescens on soya oil cake in solid-state fermentation. Applied Biochemistry and Biotechnology, 160, 52–62.

    Article  Google Scholar 

  • AOAC. (2000). Official methods of analysis of AOAC International. Washington, DC: AOAC.

    Google Scholar 

  • Bernfeld, P. (1955). Amylase α and β. Methods in Enzymology, 1, 149–158.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Chutmanop, J., Chuichulcherm, S., Chisti, Y., & Srinophakun, P. (2008). Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. Journal of Chemical Technology and Biotechnology, 83, 1012–1018.

    Article  CAS  Google Scholar 

  • Eibes, G. M., Lú-Chau, T. A., Ruiz-Dueñas, F. J., Feijoo, G., Martínez, M. J., Martínez, A. T., et al. (2009). Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess and Biosystem Engineering, 32, 129–134.

    Article  CAS  Google Scholar 

  • Hashemi, M., Razavi, S. H., Shojaosadati, S. A., Mousavi, S. M., Khajeh, K., Safari, M. (2010). Development of a SSF process for production of an alpha amylase with potentially interesting properties. Journal of Bioscience and Bioengineering, 110(3), 333–337.

    Google Scholar 

  • Lonsane, B. K., & Ramesh, M. V. (1990). Production of bacterial thermostable α-amylase by solid-state fermentation: A potential tool for achieving economy in enzyme production and starch hydrolysis. Advances in Applied Microbiology, 35, 1–56.

    Article  CAS  Google Scholar 

  • MacCabe, A. P., Orejas, M., Tamayo, E. N., Villanueva, A., & Ramón, D. (2002). Improving extracellar production of food use enzymes from Aspergillus nidulans. Journal of Biotechnology, 96, 43–54.

    Article  CAS  Google Scholar 

  • Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Solid state fermentation for the production of industrial enzymes. Current Science, 77, 149–162.

    CAS  Google Scholar 

  • Rajagopalan, G., & Krishnan, C. (2009). Optimization of agro-residual medium for α-amylase production from a hyper-producing Bacillus subtilis KCC103 in submerged fermentation. Journal of Chemical Technology and Biotechnology, 84, 618–625.

    Article  CAS  Google Scholar 

  • Ramesh, M. V., & Lonsane, B. K. (1987). Solid state fermentation for production of α-amylase by Bacillus megaterium 16 M. Biotechnology Letters, 9, 323–328.

    Article  CAS  Google Scholar 

  • Rivela, I., Rodríguez Couto, S., & Sanrom àn, A. (2000). Extracellular ligninolytic enzyme production by Phanerochaete chrysosporium in a new solid-state bioreactor. Biotechnology Letters, 22, 1443–1447.

    Article  CAS  Google Scholar 

  • Sajedi, R. H., Naderi-Manesh, H., Khajeh, K., Ahmadvand, R., Ranjbar, B., Asoodeh, A., & Moradian, F. (2005). A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme and Microbial Technology, 36, 666–671.

    Article  CAS  Google Scholar 

  • Sguarezi, C., Longo, C., Ceni, G., Boni, G., Silva, M. F., Di Luccio, M., et al. (2007). Inulinase production by agro-industrial residues: Optimization of pretreatment of substrates and production medium. Food and Bioprocess Technology, 2, 409–414.

    Article  Google Scholar 

  • Sodhi, H. K., Sharma, K., Gupta, J. K., & Soni, S. K. (2005). Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochemistry, 40, 525–534.

    Article  CAS  Google Scholar 

  • Syu, M.-J., & Chen, Y.-H. (1997). A study on the a-amylase fermentation performed by Bacillus amyloliquefaciens. Chemical Engineering Journal, 65, 237–247.

    Article  CAS  Google Scholar 

  • Takashima, S., Iikura, H., Nakamura, A., Hidaka, M., Masaki, H., & Uozumi, T. (1998). Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. Journal of Biotechnology, 2–3, 163–171.

    Article  Google Scholar 

  • Ustok, F. I., Tari, C., & Gogusb, N. (2007). Solid-state production of polygalacturonase by Aspergillus sojae ATCC 20235. Journal of Biotechnology, 127, 322–334.

    Article  CAS  Google Scholar 

  • Yu, X., Guo, N., Chi, Z., Gong, F., Sheng, J., & Chi, Z. (2008). Inulinase overproduction by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. Biochemical Engineering Journal, 43(3), 266–271.

    Article  Google Scholar 

  • Yuan, Q.-P., Wang, J.-D., Zhang, H., & Qian, Z.-M. (2005). Effect of temperature shift on production of xylanase by Aspergillus niger. Process Biochemistry, 40, 3255–3257.

    Article  CAS  Google Scholar 

  • Zheng, M., Du, G., Guo, W., & Chen, J. (2001). A temperature-shift strategy in batch microbial transglutaminase fermentation. Process Biochemistry, 36, 525–530.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Department of Food Science and Engineering, Agricultural Engineering and Technology Faculty, the University of Tehran, and the Agricultural Biotechnology Research Institute of Iran (ABRII). The authors would thank Dr. Khajeh, Department of Biochemistry and Biophysics, Faculty of Science, Tarbiat Modares University, for providing the bacterial strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abbas Shojaosadati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashemi, M., Shojaosadati, S.A., Razavi, S.H. et al. The Efficiency of Temperature-Shift Strategy to Improve the Production of α-Amylase by Bacillus sp. in a Solid-State Fermentation System. Food Bioprocess Technol 5, 1093–1099 (2012). https://doi.org/10.1007/s11947-010-0425-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0425-2

Keywords

Navigation