Skip to main content
Log in

Hydro-Ethanolic Mixtures for the Recovery of Phenols from Mediterranean Plant Materials

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The optimization of phenol extraction in hydro-ethanolic mixtures was investigated by using dried samples of aromatic plants (Salvia fruticosa and Origanum dictamnus L.) and fruit-bearing tree leaves (Olea europaeae L. and Citrus sinensis L.) as substrates. Four extraction conditions were studied by monitoring the phenolic content and the antioxidant efficacy of the extracts. Temperature and time were the primary factors affecting the extraction yield, while their increase to 60 °C and 8 h, respectively, resulted in enhanced phenols recovery. Extraction equilibrium was obtained for all the determinations only in the case of dictamnus after 4 h. The sample/solvent ratio seem to affect conversely the phenol content and antioxidant efficacy (AE) yield, as the higher total phenols concentrations were followed by lower AE values. The ethanol content affected also the process, but the impact on yield was rather important (and negative) only by using absolute ethanol. Sage was the most phenol rich substrate with a maximum yield of 73.3 mg total phenols/g and AE value of 30.6 mg 2,2-diphenyl-1-picrylhydrazyl (DPPH)/g, which were obtained by using the conditions of 40 °C, 8 h, 40 g sample/L, and 70 mL ethanol/100 mL. Dictamnus, olive, and orange tree leaves followed with maximum yields of 43.9, 43.3, and 12.2 mg total phenols/g as well as 16.1, 19.3, and 1.2 mg DPPH/g, respectively (obtained with 40 °C, 2 h, 40 g/L, 70 mL/100 mL, 40 °C, 8 h, 40 g/L, 70 mL/100 mL, and 60 °C, 2 h, 40 g/L, 70 mL/100 mL, respectively). The aromatic plants extracts were proposed as additives in order to produce potable drinks with similar AE to established beverages, after a simple dilution with water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atoui, A. K., Mansouri, A., Boskou, G., & Kefalas, P. (2005). Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chemistry, 89(1), 27–36.

    Article  CAS  Google Scholar 

  • Avila-Sosa, R., Gastélum-Franco, M. G., Camacho-Dávila, A., Torres-Muñoz, J. V., & Nevárez-Moorillón, G. V. (2010). Extracts of Mexican oregano (Lippia berlandieri Schauer) with antioxidant and antimicrobial activity. Food and Bioprocess Technology, 3(3), 434–440.

    Article  Google Scholar 

  • Boskou, D. (2006). Sources of natural antioxidant phenols. In D. Boskou (Ed.), Natural antioxidant phenols: Sources, structure-activity relationship, current trends in analysis and characterization (pp. 1–14). Kerala: Research Signpost.

    Google Scholar 

  • Bouaziz, M. & Sayadi, S. (2005). Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. European Journal of Lipid Science and Technology, 107(7–8), 497–504.

    Article  CAS  Google Scholar 

  • Boudhrioua, N., Bahloul, N., Slimen, I., & Kechaou, N. (2009). Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Industrial Crops and Products, 29(2–3), 412–419.

    Article  CAS  Google Scholar 

  • Cacace, J. E. & Mazza, G. (2003). Optimization of extraction of anthocyanins from black currants with aqueous ethanol. Journal of Food Science, 68(1), 240–248.

    Article  CAS  Google Scholar 

  • Durling, N. E., Cathpole, O. J., Grey, J. B., Webby, R. F., Mitchell, K. A., Food, L. Y., et al. (2007). Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol-water mixtures. Food Chemistry, 101(4), 1417–1424.

    Article  CAS  Google Scholar 

  • Exarchou, V., Nenadis, N., Tsimidou, M., Gerothanassis, I. P., Troganis, A., & Boskou, D. (2002). Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. Journal of Agricultural and Food Chemistry, 50(19), 5294–5299.

    Article  CAS  Google Scholar 

  • Galanakis, C. M., Tornberg, E., & Gekas, V. (2010a). A study of the recovery of the dietary fibers from olive mill wastewater and the gelling ability of the soluble fibre fraction. LWT Food Science and Technology, 43(7), 1009–1017.

    Article  CAS  Google Scholar 

  • Galanakis, C. M., Tornberg, E., & Gekas, V. (2010b). Clarification of high-added value products from olive mill wastewater. Journal of Food Engineering, 99(2), 190–197.

    Article  CAS  Google Scholar 

  • Galanakis, C. M., Tornberg, E., & Gekas, V. (2010c). Recovery and preservation of phenols from olive mill wastewater in ethanolic extracts. Journal of Chemical Technology and Biotechnology, 85, 1148–1155.

    Article  CAS  Google Scholar 

  • Gali-Muhtasib, H. (2006). Anticancer and medicinal properties of essential oil and extracts of East Mediterranean sage (salvia triloba). Advances in Phytomedicine, 2(1), 169–180.

    Article  CAS  Google Scholar 

  • Gertenbach, D. D. (2001). Solid-liquid extraction technologies for manufacturing nutraceuticals from botanics. In J. Shi, G. Mazza & M. Le Maguer (Eds.), Functional foods: Biochemical and processing aspects, vol 2 (pp. 331–366). Boca Raton: CRC.

    Google Scholar 

  • Japón-Luján, R. & Luque de Castro, M. D. (2008). Liquid-liquid extraction for the enrichment of edible oils with phenols from olive leaf extracts. Journal of Agricultural and Food Chemistry, 56(7), 2505–2511.

    Article  Google Scholar 

  • Japón-Luján, R., Luque-Rodríguez, J. M., & Luque de Castro, M. D. (2006a). Multivariate optimisation of the microwave-assisted extraction of oleuropein and related biophenols from olive leaves. Analytical and Bioanalytical Chemistry, 385(4), 753–759.

    Article  Google Scholar 

  • Japón-Luján, R., Luque-Rodríguez, J. M., & Luque de Castro, M. D. (2006b). Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography. A, 1108(1), 76–82.

    Article  Google Scholar 

  • Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., et al. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954–3962.

    Article  Google Scholar 

  • Khiari, Z., Makris, D. P., & Kefalas, P. (2009). An investigation on the recovery of antioxidant phenolics from onion solid wastes employing water/ethanol-based solvent systems. Food and Bioprocess Technology, 2(4), 337–343.

    Article  CAS  Google Scholar 

  • Kouri, G., Tsimogiannis, D., Bardouki, H., & Oreopoulou, V. (2007). Extraction and analysis of antioxidant components from Origanum dictamnus. Innovative Food Science & Emerging Technologies, 8(2), 155–162.

    Article  CAS  Google Scholar 

  • Kulisic, T., Radonic, A., Katalinic, V., & Milos, M. (2004). Use of different methods for testing antioxidative activity of oregano essential oil. Food Chemistry, 85(4), 633–640.

    Article  CAS  Google Scholar 

  • Lu, Y. & Foo, L. Y. (1999). Rosmaniric acid derivatives from Salvia officinalis. Phytochemistry, 51(1), 91–94.

    Article  CAS  Google Scholar 

  • Makris, D. P., Boskou, G., & Andrikopoulos, N. K. (2007). Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresource Technology, 98(15), 2963–2967.

    Article  CAS  Google Scholar 

  • Mateos, R., Esparteto, J., Trujillo, M., Rios, J. J., Leon-Camacho, M., Alcudia, F., et al. (2001). Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. Journal of Agricultural and Food Chemistry, 49(5), 2185–2192.

    Article  CAS  Google Scholar 

  • McDonald, S., Prenzler, P. D., Antonolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73(1), 73–84.

    Article  CAS  Google Scholar 

  • Moure, A., Cruz, J. M., Franco, D., Domínguez, J. M., Sineiro, J., Domínguez, H., et al. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145–171.

    Article  CAS  Google Scholar 

  • Mylonaki, S., Kiassos, E., Makris, D. P., & Kefalas, P. (2008). Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Analytical and Bioanalytical Chemistry, 392(5), 977–985.

    Article  CAS  Google Scholar 

  • Niaounakis, M. & Halvadakis, C. P. (2004). Characterization of olive-mill waste. In G. Dardanos (Ed.), Olive-mill waste management, literature review and patent survey (pp. 13–44). Athens: Typothito.

    Google Scholar 

  • Obied, H. K., Allen, M. S., Bedgood, D. R., Prenzler, P. D., & Robards, K. (2005). Investigation of Australian olive mill waste for recovery of biophenols. Journal of Agricultural and Food Chemistry, 53(26), 9911–9920.

    Article  CAS  Google Scholar 

  • Oreopoulou, V. (2003). Extraction of natural antioxidants. In C. Tzia & G. Liadakis (Eds.), Extraction optimization in food engineering (pp. 329–346). New York: Marcel Dekker.

    Google Scholar 

  • Paiva-Martins, F. & Pinto, M. (2008). Isolation and Characterization of a new hydroxytyrosol derivative from olive (Olea europaea) leaves. Journal of Agricultural and Food Chemistry, 56(14), 5582–5588.

    Article  CAS  Google Scholar 

  • Pasias, I. N., Farmaki, E. G., Thomaidis, N. S., & Piperaki, E. A. (2009). Elemental content and total antioxidant activity of Salvia fruticosa. Food Analytical Methods, 3, 109–204.

    Google Scholar 

  • Peleg, H., Naim, M., Rouseff, R. L., & Zehavi, U. (1991). Distribution of bound and free phenolic acids in oranges (Citrus sinensis) and Grapefruits (Citrus paradisi). Journal of the Science of Food and Agriculture, 57(3), 417–426.

    Article  CAS  Google Scholar 

  • Pereira, C. G., Angela, M., & Meireles, A. (2010). Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3(3), 340–372.

    Article  CAS  Google Scholar 

  • Pizzale, L., Bortolomeazzi, R., Vichi, S., Überegger, E., & Conte, L. S. (2002). Antioxidant activity of sage (Salvia officinalis and S fruticosa) and oregano (Origanum onites and O indercedens) extracts related to their phenolic compound content. Journal of the Science of Food and Agriculture, 82(14), 1645–1651.

    Article  CAS  Google Scholar 

  • Schieber, A., Stinzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science and Technology, 12(11), 401–413.

    Article  CAS  Google Scholar 

  • Tsimogiannis, D., Stavrakaki, M., & Oreopoulou, V. (2006). Isolation and characterisation of antioxidant components from oregano (Origanum heracleoticum). International Journal of Food Science & Technology, 41, 39–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis M. Galanakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsakona, S., Galanakis, C.M. & Gekas, V. Hydro-Ethanolic Mixtures for the Recovery of Phenols from Mediterranean Plant Materials. Food Bioprocess Technol 5, 1384–1393 (2012). https://doi.org/10.1007/s11947-010-0419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0419-0

Keywords

Navigation