Skip to main content
Log in

Optimization and Modeling of Process Parameters for Lipase Production by Bacillus brevis

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Statistical evaluation of fermentation conditions and nutritional factors by Plackett–Burman two-level factorial design followed by optimization of significant parameters using response surface methodology for lipase production by Bacillus brevis was performed in submerged batch fermentation. Temperature, glucose, and olive oil were found to be the significant factors affecting lipase production. Maximum lipase activity of 5.1 U ml−1 and cell mass of 1.82 g l−1 at 32 h were obtained at the optimized conditions of temperature, 33.7 °C; initial pH, 8; and speed of agitation, 100 rpm, with the medium components: olive oil, 13.73 ml l−1; glucose, 13.98 g l−1; peptone, 2 g l−1; Tween 80, 5 ml l−1; NaCl, 5 g l−1; CH3COONa, 5 g l−1; KCl, 2 g l−1; CaCl2·2H2O, 1 g l−1; MnSO4·H2O, 0.5 g l−1; FeSO4·7H2O, 0.1 g l−1; and MgSO4·7H2O, 0.01 g l−1. The lipase productivity and specific lipase activity were found to be 0.106 U (ml h)−1 and 2.55 U mg−1, respectively. Unstructured kinetic models and artificial neural network models were used to describe the lipase fermentation. The kinetic analysis of the lipase fermentation by B. brevis shows that lipase is a growth-associated product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Fattah, Y. R. (2002). Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design. Biotechnological Letters, 24(14), 1217–1222.

    Article  CAS  Google Scholar 

  • Abdel-Fattah, Y. R., & Olama, Z. A. (2002). L-asparaginase production by Pseudomonas aeruginosa in solid-state culture: evaluation and optimization of culture conditions using factorial designs. Process Biochemistry, 38, 115–122.

    Article  CAS  Google Scholar 

  • Anson, M. L. (1938). The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. The Journal of General Physiology, 22, 79–89.

    Article  CAS  Google Scholar 

  • Aravindan, R., & Viruthagiri, T. (2007). Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology. Canadian Journal of Microbiology, 53(5), 643–655.

    Article  Google Scholar 

  • Aravindan, R., & Viruthagiri, T. (2008). Evaluation of various unstructured kinetic models for protease production by Bacillus sphaericus MTCC 511. Engineering in Life sciences, 8(2), 179–185.

    Article  Google Scholar 

  • Arifin, N., Peng, K. S., Long, K., Ping, T. C., Yusoff, M. S. A., & Ming, L. O. (2010). Modeling and optimization of Lipozyme RM IM-catalyzed esterification of medium- and long-chain triacyglycerols (MLCT) using response surface methodology. Food and Bioprocess Technology. doi:10.1007/s11947-010-0325-5.

    Google Scholar 

  • Box, G. E. P., & Behnken, D. W. (1960). Some new three level design for the study of quantitative variables. Technometrics, 2(4), 455–475.

    Article  Google Scholar 

  • Chakravarthi, R., & Sahai, V. (2002). Optimization of compactin production in chemically defined production medium by Penicillin citrinum using statistical methods. Process Biochemistry, 38, 481–486.

    Article  Google Scholar 

  • Chandrashekar, K., Felse, P. A., & Panda, T. (1999). Optimization of temperature and initial pH and kinetic analysis of tartaric acid production by Gluconobacter suboxydans. Bioprocess and Biosystems Engineering, 20(3), 203–207.

    CAS  Google Scholar 

  • Chen, S. J., Cheng, C. Y., & Chen, T. L. (1998). Production of an alkaline lipase by Acinetobacter radioresistens. Journal of Fermentation and Bioengineering, 86, 308–312.

    Article  CAS  Google Scholar 

  • Cruz, P. M., Christen, P., & Farres, A. (1993). Medium optimization by a fractional factorial design for lipase production by Rhizopus delemar. Journal of Fermentation and Bioengineering, 76(2), 94–97.

    Article  Google Scholar 

  • Deive, F. J., Sanroman, M. A., & Longo, M. A. (2010). A comprehensive study of lipase production by Yarrowia lipolytica CECT 1240 (ATCC 18942): from shake flask to continuous bioreactor. Journal of Chemical Technology and Biotechnology, 85(2), 258–266.

    CAS  Google Scholar 

  • Del Rio, J. L., Serra, P., Valero, F., Poch, M., & Sola, C. (1990). Reaction scheme of lipase production by Candida rugosa growing on olive oil. Biotechnological Letters, 12(11), 835–838.

    Article  Google Scholar 

  • Elibol, M., & Ozer, D. (2000). Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochemistry, 36, 325–329.

    Article  Google Scholar 

  • Essamri, M., Valerie, D., & Louis, C. (1998). Optimization of lipase production by Rhizopus oryzae and study on the stability of lipase activity in organic solvents. Journal of Biotechnology, 60, 97–103.

    Article  CAS  Google Scholar 

  • Ghosh, P. K., Saxena, R. K., Gupta, R., Yadav, R. P., & Davidson, S. (1996). Microbial lipases: production and applications. Science Progress, 79(2), 119–157.

    CAS  Google Scholar 

  • Gordillo, M. A., Sanz, A., Sanchez, A., Valero, F., Montesinos, J. L., Lafuente, J., et al. (1998). Enhancement of Candida rugosa lipase production using different control fed-batch operational strategies. Biotechnology and Bioengineering, 60(2), 156–168.

    Article  CAS  Google Scholar 

  • Gowland, P., Kernick, M., & Sundaram, T. K. (1987). Thermophilic bacterial isolates producing lipase. FEMS Microbiology Letters, 48(3), 339–343.

    Article  CAS  Google Scholar 

  • Griebeler, N., Polloni, A. E., Remonatto, D., Arbter, F., Vardanega, R., Cechet, J. L., et al. (2009). Isolation and screening of lipase-producing fungi with hydrolytic activity. Food and Bioprocess Technology. doi:10.1007/s11947-008-0176-5.

    Google Scholar 

  • Helisto, P., & Korpela, T. (1998). Effects of detergents on activity of microbial lipases as measured by the nitrophenyl alkanoate esters method. Enzyme and Microbial Technology, 23, 113–117.

    Article  CAS  Google Scholar 

  • Hou, C. T. (1994). pH dependence and thermostability of lipases from cultures from the ARS culture collection. Journal of Industrial Microbiology & Biotechnology, 13(4), 242–248.

    CAS  Google Scholar 

  • Hun, C. J., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. (2003). A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent stable lipase. Biochemical Engineering Journal, 15, 147–151.

    Article  CAS  Google Scholar 

  • Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16, 396–402.

    Article  CAS  Google Scholar 

  • Jose, J., & Kurup, G. M. (1999). Purification and characterization of an extracellular lipase from a newly isolated thermophilc Bacillus pumilus. Indian Journal of Experimental Biology, 37(12), 1213–1217.

    CAS  Google Scholar 

  • Khyami-Horani, H. (1996). Thermotolerant strain of Bacillus licheniformis producing lipase. World Journal of Microbiology & Biotechnology, 12(4), 399–401.

    Article  CAS  Google Scholar 

  • Kim, H. K., Park, S. Y., Lee, J. K., & Oh, T. K. (1998). Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Bioscience, Biotechnology, and Biochemistry, 62(1), 66–71.

    Article  CAS  Google Scholar 

  • Li, C. Y., Cheng, C. Y., & Chen, T. L. (2004). Fed-batch production of lipase by Acinetobacter radioresistens using Tween 80 as the carbon source. Biochemical Engineering Journal, 19, 25–31.

    Article  Google Scholar 

  • Linko, S., Luopa, J., & Zhu, Y. H. (1997). Neural networks as “software sensors” in enzyme production. Journal of Biotechnology, 52(3), 257–266.

    Article  CAS  Google Scholar 

  • Lotti, M., Monticelli, S., Montesinos, J. L., Brocca, S., Valero, F., & Lafuente, J. (1998). Physiological control on the expression and secretion of Candida rugosa lipase. Chemistry and Physics of Lipids, 93, 143–148.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosenbrough, M. J., Farr, A. L., & Randell, R. J. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Luedeking, R., & Piret, E. L. (1959). A kinetic study of the lactic acid fermentation. Biotechnology and Bioengineering, 1, 393–412.

    Article  CAS  Google Scholar 

  • Macrae, A. R., & Hammond, R. C. (1985). Present and future applications of lipases. Biotechnology & Genetic Engineering Reviews, 3, 193–217.

    CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  • Montesinos, J. L., Lafuente, J., Gordillo, M. A., Valero, F., & Sola, C. (1995). Structured modeling and state estimation in a fermentation process: Lipase production by Candida rugosa. Biotechnology and Bioengineering, 48, 573–584.

    Article  CAS  Google Scholar 

  • Nahas, E. (1988). Control of lipase production by Rhizopus oligosporus under various growth conditions. Journal of General Microbiology, 134, 227–233.

    CAS  Google Scholar 

  • Ota, Y., & Yamada, K. (1966). Lipase from Candida paralipolytica Part I. Anionic surfactants as the essential activator in the systems emulsified by polyvinyl alcohol. Agricultural and Biological Chemistry, 30(4), 351–358.

    Article  CAS  Google Scholar 

  • Pandey, A., Benjamin, S., Cr, S., Nigam, P., Krieger, N., & Soccol, V. T. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29, 119–131.

    CAS  Google Scholar 

  • Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrica, 33, 305–325.

    Article  Google Scholar 

  • Sahin, S., Warna, J., Arvela, P. M., Salmi, T., & Murzin, D. Y. (2010). Kinetic modeling of lipase-mediated one-pot chemo-bio cascade synthesis of R-1-phenyl ethyl acetate starting from acetophenone. Journal of Chemical Technology and Biotechnology, 85(2), 192–198.

    CAS  Google Scholar 

  • Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization and applications of lipase. Biotechnology Advances, 19, 627–662.

    Article  CAS  Google Scholar 

  • Sharma, R., Soni, S. K., Vohra, R. M., Jolly, R. S., Gupta, L. K., & Gupta, J. K. (2002). Production of extracellular alkaline lipase from a Bacillus sp. RSJ1 and its application in ester synthesis. Indian Journal of Microbiology, 42, 49–54.

    Google Scholar 

  • Shidhu, P., Sharma, R., Soni, S. K., & Gupta, J. K. (1998). Effect of cultural conditions on extracellular alkaline lipase production by Bacillus sp. RS-12 and its characterization. Indian Journal of Microbiology, 38, 9–14.

    Google Scholar 

  • Silva, W. O. B., Mitidieri, S., Schrank, A., & Vainstein, M. H. (2005). Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochemistry, 40(1), 321–326.

    Article  Google Scholar 

  • Stowe, R. A., & Mayer, R. P. (1966). Efficient screening of process variables. Industrial and Engineering Chemistry, 58(2), 36–40.

    Article  CAS  Google Scholar 

  • Sugihara, A., Tani, T., & Tominaga, Y. (1991). Purification and characterization of a novel thermostable lipase from Bacillus sp. Journal of Biochemistry, 109(2), 211–216.

    CAS  Google Scholar 

  • Sztajer, H., Maliszewska, I., & Wieczorek, J. (1988). Production of exogenous lipases by bacteria, fungi, and actinomycetes. Enzyme and Microbial Technology, 10, 492–497.

    Article  CAS  Google Scholar 

  • Treichel, H., Oliveira, D., Mazutti, M. A., Di Luccio, M., & Oliveira, J. V. (2010). A review on microbial lipases production. Food and Bioprocess Technology, 3, 182–196.

    Article  CAS  Google Scholar 

  • Tyndall, J. D., Sinchaikul, S., Fothergill-Gilmore, L. A., Taylor, P., & Walkinshaw, M. D. (2002). Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1. Journal of Molecular Biology, 323, 859–869.

    Article  CAS  Google Scholar 

  • Valero, F., Ayats, F., Lopez-Santin, J., & Poch, M. (1988). Lipase production by Candida rugosa: fermentation behaviour. Biotechnological Letters, 10(10), 741–744.

    Article  CAS  Google Scholar 

  • Wang, Y. X., Srivastava, K. C., Shen, G. J., & Wang, H. Y. (1995). Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). Journal of Fermentation and Bioengineering, 79, 433–438.

    Article  CAS  Google Scholar 

  • Weiss, R. M., & Ollis, D. F. (1980). Extracellular Microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation. Biotechnology and Bioengineering, 22, 859–873.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the Chemical Engineering Department, Annamalai University for providing facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravindan Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran, A., Thangavelu, V. Optimization and Modeling of Process Parameters for Lipase Production by Bacillus brevis . Food Bioprocess Technol 5, 310–322 (2012). https://doi.org/10.1007/s11947-010-0387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0387-4

Keywords

Navigation