Food and Bioprocess Technology

, Volume 3, Issue 6, pp 843–852 | Cite as

Drying Technology: Trends and Applications in Postharvest Processing

Original Paper

Abstract

Thermal drying technologies have attracted significant R&D efforts owing to the rising demand for improved product quality and reduced operating cost as well as diminished environmental impact. Drying materials may appear in the form of wet solid, liquid, suspension, or paste, which require drying to extend the period of storage, ease of transportation, and for downstream processing to produce value added products. Most of these materials are heat-sensitive and require careful drying; conventional hot air drying can be detrimental to the retention of bioactive ingredients. High temperature tends to damage and denature the product, destroy active ingredients, cause case hardening and discoloration, etc. This article briefly summarizes some of the emerging drying methods and selected recent developments applicable to postharvest processing. These include: heat pump-assisted drying with multimode and time-varying heat input, low and atmospheric pressure superheated steam drying, modified atmosphere drying, intermittent batch drying, osmotic pretreatments, microwave-vacuum drying, etc.

Keywords

Dehydration Bioactive ingredients Preservation Energy savings Quality 

References

  1. Ade-Omowaye, B. I. O., Angersbach, A., Taiwo, K. A., & Knorr, D. (2001). Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends in Food Science and Technology, 12(8), 285–295.CrossRefGoogle Scholar
  2. Afzal, M. T. (2003). Intermittent far infrared radiation drying. ASAE Annual Meeting, Paper number 036201.Google Scholar
  3. Alves-Filho, O., & Eikevik, T. M. (2009). Acceleration of heat pump atmospheric freeze drying of green peas by controlled fluidization and infrared radiation. Proceedings of the 4th Nordic Drying Conference, 17–19 Jun 2009, Reykjavik, Iceland (CD-ROM).Google Scholar
  4. Alves-Filho, O., Eikevik, T. M., Walberg, M., & Fridberg, C. (2009). Energy and thermal efficiency analysis for combined spray drying and heat pump systems. Proceedings of the 4th Nordic Drying Conference, 17–19 Jun 2009, Reykjavik, Iceland (CD-ROM).Google Scholar
  5. Amami, E., Fersi, A., Khezami, L., Vorobiev, E., & Kechaou, N. (2007). Centrifugal osmotic dehydration and rehydration of carrot tissue pre-treated by pulsed electric field. LWT–Food Science and Technology, 40(7), 1156–1166.Google Scholar
  6. Arabhosseini, A., Padhye, S., Huisman, W., van Boxtel, A., & Müller, J. (2010). Effect of drying on the color of tarragon (Artemisia dracunculus L.) Leaves. Food and Bioprocess Technology. doi:10.1007/s11947-009-0305-9.Google Scholar
  7. Arason, S. (2009). Utilization of geothermal energy for drying fish products and new drying technologies in Iceland. Proceedings of the 4th Nordic Drying Conference, 17–19 Jun 2009, Reykjavik, Iceland (CD-ROM).Google Scholar
  8. Artnaseaw, A., Theerakulpisut, S., & Benjapiyaporn, C. (2010). Development of a vacuum heat pump dryer for drying chilli. Biosystems Engineering, 105, 130–138.CrossRefGoogle Scholar
  9. Askari, G. R., Emam-Djomeh, Z., & Mousavi, S. M. (2009). An investigation of the effects of drying methods and conditions on drying characteristics and quality attributes of agricultural products during hot air and hot air/microwave-assisted dehydration. Drying Technology, 27, 831–841.CrossRefGoogle Scholar
  10. Augustus, L. M. (2009). Thesis summary: Theoretical and experimental investigation of a solar–biomass hybrid air heating system for drying applications. Drying Technology, 27, 821–822.CrossRefGoogle Scholar
  11. Aversa, M., Curcio, S., Calabrò, V., & Iorio, G. (2010). Experimental Evaluation of quality parameters during drying of carrot samples. Food and Bioprocess Technology. doi:10.1007/s11947-009-0280-1.Google Scholar
  12. Bantle, M., Eikevik, T. M., & Rustad, T. (2009). Atmospheric freeze-drying of Calanus finmarchicus and its effects on proteolytic and lipolytic activities. Proceedings of the 4th Nordic Drying Conference, 17–19 Jun 2009, Reykjavik, Iceland (CD-ROM).Google Scholar
  13. Bon, J., & Kudra, T. (2007). Enthalpy-driven optimization of intermittent drying. Drying Technology, 25, 523–532.CrossRefGoogle Scholar
  14. Borquez, R. M., Canales, E. R., & Quezada, H. R. (2008). Drying of fish press-cake with superheated steam in a pilot plant impingement system. Drying Technology, 26, 290–298.CrossRefGoogle Scholar
  15. Braga, A. M. P., Pedroso, M. P., Augusto, F., & Silva, M. A. (2009). Volatiles identification in pineapple submitted to drying in an ethanolic atmosphere. Drying Technology, 27, 248–257.CrossRefGoogle Scholar
  16. Carvalho, L. M. J. d., Motta, E. L., Moura, M. R. L., Barbi, N., Vieira, A. C. d. M., & Freitas, S. C. d. (2009). Comparative study on nutritional and morphological aspects of lychees (Litchi chinensis sonn.) after osmotic pre-treatment and conventional dehydration. Proceedings of the 5th CIGR Section VI International Symposium on Food Processing, Monitoring Technology in Bioprocesses and Food Quality Management, 31 Aug–2 Sep 2009, Potsdam, Germany, pp 964–968 (CD-ROM).Google Scholar
  17. Chakraverty, A., Mujumdar, A. S., Raghavan, V., & Ramaswamy, H. S. (Eds.) (2003). Handbook of postharvest technology—Cereals, fruits, vegetables, teas and spices. Boca Raton: CRC.Google Scholar
  18. Chen, X. D., & Mujumdaer, A. S. (Eds.) (2008). Drying technologies in food processing. Oxford: Blackwell.Google Scholar
  19. Chen, H.-H., Huang, T.-C., Tsai, C.-H., & Mujumdar, A. S. (2008). Development and performance analysis of a new solar energy-assisted photocatalytic dryer. Drying Technology, 26, 503–507.CrossRefGoogle Scholar
  20. Chong, C. H., & Law, C. L. (2009). Product quality of intermittent dried of Manilkara zapota. Proceedings of the XII Polish Drying Symposium, 14–16 Sep 2009. Łódź, Poland, pp. 342–361 (CD-ROM).Google Scholar
  21. Chua, K. J., Chou, S. K., Hawlader, M. N. A., Ho, J. C., & Mujumdar, A. S. (2002). On the study of time-varying temperature drying—Effect on drying kinetics and product quality. Drying Technology, 20, 1579–1610.CrossRefGoogle Scholar
  22. Corzo, O., & Bracho, N. (2007). Determination of water effective diffusion coefficient of sardine sheets during vacuum pulse osmotic dehydration. LWT–Food Science and Technology, 40(8), 1452–1458.Google Scholar
  23. Cui, Z. W., Xu, S. Y., Sun, D. W., & Chen, W. (2006). Dehydration of concentrated Ganoderma lucidum extraction by combined microwave–vacuum and conventional vacuum drying. Drying Technology, 24, 595–599.CrossRefGoogle Scholar
  24. Cui, Z. W., Li, C. Y., Song, C. F., & Song, Y. (2008a). Combined microwave–vacuum and freeze drying of carrot and apple chips. Drying Technology, 26, 1517–1523.CrossRefGoogle Scholar
  25. Cui, Z. W., Sun, L. J., Chen, W., & Sun, D. W. (2008b). Preparation of dry honey by microwave–vacuum drying. Journal of Food Engineering, 84, 582–590.CrossRefGoogle Scholar
  26. Devahastin, S., & Suvarnakuta, P. (2008). Low pressure superheated steam drying of food products. In X. D. Chen & A. S. Mujumdar (Eds.), Drying technologies in food processing (pp. 160–189). Oxford: Blackwell.Google Scholar
  27. Duan, X., Zhang, M., & Mujumdar, A. S. (2007). Studies on the microwave freeze drying technique and sterilization characteristics of cabbage. Drying Technology, 25, 1725–1731.CrossRefGoogle Scholar
  28. Duan, X., Zhang, M., Li, X., & Mujumdar, A. S. (2008). Ultrasonically enhanced osmotic pretreatment of sea cucumber prior to microwave freeze drying. Drying Technology, 26, 420–426.CrossRefGoogle Scholar
  29. Elustondo, D. M., Mujumdar, A. S., & Urbicain, M. J. (2002). Optimum operating conditions in drying foodstuffs with superheated steam. Drying Technology, 20, 381–402.CrossRefGoogle Scholar
  30. Emilie, D., Sylvain, G., Jean-Dominique, D., & Catherine, B. (2009). Polyphenols degradation mechanisms during soaking and drying of cider apples. Proceedings of the 5th CIGR Section VI International Symposium on Food Processing, Monitoring Technology in Bioprocesses and Food Quality Management, 31 Aug–2 Sep 2009, Potsdam, Germany, pp. 738–747 (CD-ROM).Google Scholar
  31. Falade, K. O., & Omojola, B. S. (2010). Effect of processing methods on physical, chemical, rheological, and sensory properties of okra (Abelmoschus esculentus). Food and Bioprocess Technology. doi:10.1007/s11947-008-0126-2.Google Scholar
  32. Fernandes, F. A. N., Gallao, M. I., & Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT–Food Science and Technology, 41(4), 604–610.Google Scholar
  33. Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2010). Drying of exotic tropical fruits: A comprehensive review. Food and Bioprocess Technology. doi:10.1007/s11947-010-0323-7.Google Scholar
  34. Germera, S. P. M., Queirozb, M. R. d., Aguirrea, J. M., Berbaria, S. A., Silveiraa, N. F. d. A., & Carvalhoa, D. d. (2009) Reuse of sucrose syrup in the production of osmotically dried peaches. Proceedings of the 5th CIGR Section VI International Symposium on Food Processing, Monitoring Technology in Bioprocesses and Food Quality Management, 31 Aug–2 Sep 2009, Potsdam, Germany, pp. 690–695 (DC-ROM).Google Scholar
  35. Giri, S. K., & Prasad, S. (2006). Modeling shrinkage and density changes during microwave–vacuum drying of button mushroom. International Journal of Food Properties, 9, 409–419.CrossRefGoogle Scholar
  36. Giri, S. K., & Prasad, S. (2007a). Drying kinetics and rehydration characteristics of microwave–vacuum and convective hot-air dried mushrooms. Journal of Food Engineering, 78, 512–521.CrossRefGoogle Scholar
  37. Giri, S. K., & Prasad, S. (2007b). Optimization of microwave–vacuum drying of button mushrooms using response-surface methodology. Drying Technology, 25, 901–911.CrossRefGoogle Scholar
  38. Gunasekaran, S. (1999). Pulsed microwave–vacuum drying of food materials. Drying Technology, 17, 395–412.CrossRefGoogle Scholar
  39. Hasibuan, R., & Wan Daud, W. R. (2009). Quality changes of superheated steam-dried fibers from oil palm empty fruit bunches. Drying Technology, 27, 194–200.CrossRefGoogle Scholar
  40. Hawlader, M. N. A., Perera, C. O., & Tian, M. (2006a). Comparison of the retention of 6-gingerol in drying of ginger under modified atmosphere heat pump drying and other drying methods. Drying Technology, 24, 51–56.CrossRefGoogle Scholar
  41. Hawlader, M. N. A., Perera, C. O., Tian, M., & Chng, K. J. (2006b). Properties of modified atmosphere heat pump dried foods. Journal of Food Engineering, 74(3), 392–401.CrossRefGoogle Scholar
  42. Hawlader, M. N. A., Perera, C. O., Tian, M., & Yeo, K. L. (2006c). Drying of guava and papaya: Impact of different drying methods. Drying Technology, 24, 77–87.CrossRefGoogle Scholar
  43. Heredia, A., Peinado, I. R., E., Andrés, A., & Escriche, I. (2009). Influence of the osmotic pre-treatment and microwave power on the volatile profile of dried cherry tomatoes. Proceedings of the 5th CIGR Section VI International Symposium on Food Processing, Monitoring Technology in Bioprocesses and Food Quality Management, 31 Aug–2 Sep 2009, Potsdam, Germany, pp. 943–947 (CD-ROM).Google Scholar
  44. Høstmark, Ø., Flesland, O., & Mundheim, H. (2009). Superheated steam drying compared to air drying and product qualities for fishmeal. Proceedings of the 4th Nordic Drying Conference, 17–19 Jun 2009, Reykjavik, Iceland (CD-ROM).Google Scholar
  45. Huang, L., Zhang, M., Mujumdar, A. S., Sun, D., Tan, G., & Tang, S. (2009). Studies on decreasing energy consumption for a freeze-drying process of apple slices. Drying Technology, 27, 938–946.CrossRefGoogle Scholar
  46. Islam, M. R., & Mujumdar, A. S. (2008). Heat pump assisted drying. In X. D. Chen & A. S. Mujumdar (Eds.), Drying technologies in food processing (pp. 190–224). Oxford: Blackwell.Google Scholar
  47. Iyota, H., Inoue, T., Yamagata, J., & Nishimura, N. (2008). Effect of time-dependent humidity profiles from air to superheated steam on drying of a wetted starch sphere. Drying Technology, 26, 211–221.CrossRefGoogle Scholar
  48. Jangam, S. V., Joshi, V. S., Mujumdar, A. S., & Thorat, B. N. (2008). Studies on dehydration of sapota (Achras zapota). Drying Technology, 26, 369–377.CrossRefGoogle Scholar
  49. King, V. A. E., & Lin, Y. P. (2009). Investigation of continuous and intermittent heating on far-infrared assisted freeze-drying. Transactions of the ASABE., 52(6), 1979–1988.Google Scholar
  50. Kongsoontornkijkul, P., Ekwongsupasarn, P., Chiewchan, N., & Devahastin, S. (2006). Effects of drying methods and tea preparation temperature on the amount of vitamin C in indian gooseberry tea. Drying Technology, 24, 1509–1513.CrossRefGoogle Scholar
  51. Kowalski, S. J., & Mielniczuk, B. (2006). Drying-induced stresses in macaroni dough. Drying Technology, 24, 1093–1099.CrossRefGoogle Scholar
  52. Kowalski, S. J., & Pawłowski, A. (2009). Drying of wood in intermittent conditions. Proceedings of the XII Polish Drying Symposium, 14–16 Sep 2009, Łódź, Poland, pp. 583–596 (CD-ROM).Google Scholar
  53. Kowalski, S. J., & Rajewska, K. (2009). Convective drying enhanced with microwave and infrared radiation. Drying Technology, 27, 878–887.CrossRefGoogle Scholar
  54. Kudra, T., & Mujumdar, A. S. (2001). Advanced drying technologies (pp. 81–111). New York: Marcel Dekker.Google Scholar
  55. Kudra, T., & Mujumdar, A. S. (2009). Advanced drying technologies (2nd ed., pp. 89–121). Boca Raton: CRC.Google Scholar
  56. Kudra, T., & Poirier, M. (2007). Gaseous carbon dioxide as the heat and mass transfer medium in drying. Drying Technology, 25, 327–334.CrossRefGoogle Scholar
  57. Kumar, P., & Mujumdar, A. S. (1990). Superheated steam drying—A state of the art survey. In A. S. Mujumdar (Ed.), Drying of solids (pp. 33–71). Sarita Prakashan: Meerut.Google Scholar
  58. Law, C. L., Waje, S., Thorat, B. N., & Mujumdar, A. S. (2008). Innovation and recent advancement in drying operation for postharvest processes. Stalwart Postharvest Review, 4(1), 1–23.CrossRefGoogle Scholar
  59. Lemus-Mondaca, R., Miranda, M., Andres Grau, A., Briones, V., Villalobos, R., & Vega-Gálvez, A. (2009). Effect of osmotic pretreatment on hot air drying kinetics and quality of Chilean papaya (Carica pubescens). Drying Technology, 27, 1105–1115.CrossRefGoogle Scholar
  60. López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., et al. (2010). Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O’Neil. Food and Bioprocess Technology. doi:10.1007/s11947-009-0306-8.Google Scholar
  61. Maddikeri, G. L., Sutar, P. P., & Thorat, B. N. (2009). Microwave vacuum drying of onion slices. Proceedings of the XII Polish Drying Symposium, 14–16 Sep 2009, Łódź, Poland, pp. 488–501 (CD-ROM).Google Scholar
  62. Markowski, M., Cenkowski, S., Hatcher, D. W., Dexter, J. E., & Edwards, N. M. (2003). The effect of superheated-steam dehydration kinetics on textural properties of Asian noodles. Transactions of the ASAE, 46(2), 389–395.Google Scholar
  63. Markowski, M., Bondaruk, J., & Blaszczak, W. (2009). Rehydration behavior of vacuum–microwave-dried potato cubes. Drying Technology, 27, 296–305.CrossRefGoogle Scholar
  64. Mayachiew, P., & Devahastin, S. (2008). Comparative evaluation of physical properties of edible chitosan films prepared by different drying methods. Drying Technology, 26, 176–185.CrossRefGoogle Scholar
  65. McCall, J. M., & Douglas, W. J. M. (2006). Use of superheated steam drying to increase strength and bulk of papers produced from diverse commercial furnishes. Drying Technology, 24, 233–238.CrossRefGoogle Scholar
  66. Mitra, P., & Meda, V. (2009). Optimization of drying parameters of Saskatoon berries (Amelanchier alnifolia) using a combined microwave and vacuum method. Proceedings of the 5th CIGR Section VI International Symposium on Food Processing, Monitoring Technology in Bioprocesses and Food Quality Management, 31 Aug–2 Sep 2009, Potsdam, Germany, pp. 714–729 (CD-ROM).Google Scholar
  67. Mujumdar, A. S. (1991). Drying technologies of the future. Drying Technology, 9, 325–347.CrossRefGoogle Scholar
  68. Mujumdar, A. S. (1992). Superheated steam drying of paper: Principles, status and potential. In A. S. Mujumdar (Ed.), Drying of solids (pp. 208–220). New York: International Science Publisher.Google Scholar
  69. Mujumdar, A. S. (2006). Some recent developments in drying technologies appropriate for post-harvest processing. International Journal of Postharvest Technology and Innovation, 1, 76–92.CrossRefGoogle Scholar
  70. Mujumdar AS (Ed.) (2007a) Handbook of industrial drying (3rd ed.). Boca Raton: CRC.Google Scholar
  71. Mujumdar, A. S. (2007b). An overview of innovation in industrial drying: Current status and R&D needs. Transport in Porous Media, 66, 3–18.CrossRefGoogle Scholar
  72. Mujumdar, A. S. (2007c). Superheated steam drying. In A. S. Mujumdar (Ed.), Handbook of industrial drying (pp. 439–452). Boca Raton: CRC.Google Scholar
  73. Mujumdar, AS (Ed.) (2008) Guide to industrial. IDS2008, Hyderabad, India.Google Scholar
  74. Nitz, M., & Taranto, O. P. (2009). Drying of a porous material in a pulsed fluid bed dryer: Ihe influences of temperature, frequency of pulsation, and air flow rate. Drying Technology, 27, 212–219.CrossRefGoogle Scholar
  75. Nygaard, H., & Hostmark, O. (2008). Microbial inactivation during superheated steam drying of fish meal. Drying Technology, 26, 222–230.CrossRefGoogle Scholar
  76. O’Neill, M. B., Rahman, M. S., Perera, C. O., Smith, B., & Melton, L. D. (1998). Colour and density of apple cubes dried in air and modified atmosphere. International Journal of Food Properties, 1, 197–205.CrossRefGoogle Scholar
  77. Perera, C. O. (2001). Modified atmosphere heat pump drying of food products. In W. R. W. Daud (Ed.), Proceedings of the 2nd Asia–Oceania Drying Conference (pp. 469–476). Bangi: Penerbit UKM.Google Scholar
  78. Portoghese, A., Berrutia, F., & Briens, C. (2007). Continuous on-line measurement of solid moisture content during fluidized bed drying using triboelectric probes. Powder Technology, 181, 169–177.CrossRefGoogle Scholar
  79. Prachayawarakorn, S., Prachayawasin, P., & Soponronnarit, S. (2006). Heating process of soybean using hot-air and superheated-steam fluidized-bed dryers. LWT–Food Science and Technology, 39(7), 770–778.Google Scholar
  80. Prachayawarakorn, S., Soponronnarit, S., Wetchacama, S., & Jaisut, D. (2008). Desorption isotherms and drying characteristics if shrimp in superheated steam hot air. Drying Technology, 20, 669–684.CrossRefGoogle Scholar
  81. Pronyk, C., Cenkowski, S., & Muir, W. E. (2004). Drying foodstuffs with superheated steam. Drying Technology, 22, 899–916.CrossRefGoogle Scholar
  82. Pronyk, C., Cenkowski, S., Muir, W. E., & Lukow, O. M. (2008a). Effects of superheated steam processing on the textural and physical properties of Asian noodles. Drying Technology, 26, 192–203.CrossRefGoogle Scholar
  83. Pronyk, C., Cenkowski, S., Muir, W. E., & Lukow, O. M. (2008b). Optimum processing conditions of instant Asian noodles in superheated steam. Drying Technology, 26, 204–210.CrossRefGoogle Scholar
  84. Puschner, P. (2005). Improved microwave process control. In H. Schubert & M. Regier (Eds.), The microwave processing of foods (pp. 264–291). Boca Raton: CRC.Google Scholar
  85. Qing-Guo, H., Min, Z., Mujumdar, A. S., Wei-Hua, D., & Jin-Cai, S. (2006). Effects of different drying methods on the quality changes of granular edamame. Drying Technology, 24, 1025–1032.CrossRefGoogle Scholar
  86. Rahse, W., & Fues, J. F. (1995). Superheated steam drying of temperature-sensitive foods. Trends in Food Science and Technology, 6(7), 248–248.Google Scholar
  87. Rastogi, N. K., Raghavarao, K. S. M. S., Niranjan, K., & Knorr, D. (2002). Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends in Food Science and Technology, 13(2), 48–59.CrossRefGoogle Scholar
  88. Reyes, A., Campos, C., & Vega, R. (2006). Drying of turnip seeds with microwaves in fixed and pulsed fluidized beds. Drying Technology, 24, 1469–1480.CrossRefGoogle Scholar
  89. Reyes, A., Cerón, S., Zúñiga, R., & Moyano, P. (2007). A comparative study of microwave-assisted air drying of potato slices. Biosystems Engineering, 98, 310–318.CrossRefGoogle Scholar
  90. Romano, G., Baranyai, L., Gottschalk, K., & Zude, M. (2008). An approach for monitoring the moisture content changes of drying banana slices with laser light backscattering imaging. Food and Bioprocess Technology, 1(4), 410–414.CrossRefGoogle Scholar
  91. Santos, P. H. S., & Silva, M. A. (2009). Kinetics of l-ascorbic acid degradation in pineapple drying under ethanolic atmosphere. Drying Technology, 27, 947–954.CrossRefGoogle Scholar
  92. Scaman, C. H., & Durance, T. D. (2005). Combined microwave vacuum drying. In D. W. Sun (Ed.), Emerging technologies for food processing (pp. 507–534). USA: Elsevier Academic.CrossRefGoogle Scholar
  93. Schiffmann, R. F. (2007). Microwave and dielectric drying. In A. S. Mujumdar (Ed.), Handbook of industrial drying (3rd ed., pp. 285–305). Boca Raton: CRC.Google Scholar
  94. Setiady, D., Rasco, B., Younce, F., & Clary, C. (2009a). Rehydration and sensory properties of dehydrated russet potatoes (Solanum tuberosum) using microwave vacuum, heated air, or freeze dehydration. Drying Technology, 27, 1116–1122.CrossRefGoogle Scholar
  95. Setiady, D., Tang, J., Younce, F., Swanson, B. A., Rasco, B. A., & Clary, C. D. (2009b). Porosity, color, texture, and microscopic structure of russet potatoes dried using microwave vacuum, heated air, and freeze drying. Applied Engineering in Agriculture, 25(5), 719–724.Google Scholar
  96. Shadan, F., Emam-Djomeh, Z., Mortazavi, S. A., & Askari, G. R. (2009). Influence of ultrasound intensity, osmotic concentration and dehydration on antioxidants, colour and chemical properties of osmo-dehydrated persimmon. Proceedings of the XII Polish Drying Symposium, 14–16 Sep 2009, Łódź, Poland, pp. 502–509 (CD-ROM).Google Scholar
  97. Shemaei, S., & Moeini, S. (2009). Predicting the moisture and solute diffusivities of cranberry during ultrasound assisted osmotic dehydration. Proceedings of the XII Polish Drying Symposium, 14–16 Sep 2009, Łódź, Poland, pp. 79–87 (CD-ROM).Google Scholar
  98. Song, X-j, Zhang, M., & Mujumdar, A. S. (2007a). Effect of vacuum–microwave predrying on quality of vacuum-fried potato chips. Drying Technology, 25, 2021–2026.CrossRefGoogle Scholar
  99. Song, X.-J., Zhang, M., & Mujumdar, A. S. (2007b). Optimization of vacuum microwave predrying and vacuum frying conditions to produce fried potato chips. Drying Technology, 25, 2027–2034.CrossRefGoogle Scholar
  100. Soysal, Y., Ayhan, Z., Eştürk, O., & Arıkan, M. F. (2009). Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosystems Engineering, 103, 455–463.CrossRefGoogle Scholar
  101. Stanisławski, J. (2005). Drying of diced carrot in a combined microwave fluidized bed dryer. Drying Technology, 23, 1711–1721.CrossRefGoogle Scholar
  102. Stawczyk, J., Muntildeoz, I., Collell, C., & Comaposada, J. (2009). Control system for sausage drying based on on-line NIR aw determination. Drying Technology, 27, 1338–1343.CrossRefGoogle Scholar
  103. Stepien, B. (2007). Effect of vacuum–microwave drying on selected mechanical and rheological properties of carrot. Biosystems Engineering, 99, 234–238.CrossRefGoogle Scholar
  104. Sundaram, J., & Durance, T. D. (2007). Influence of processing methods on mechanical and structural characteristics of vacuum microwave dried biopolymer foams. Food and Bioproducts Processing, 85, 264–272.CrossRefGoogle Scholar
  105. Sunthonvit, N., Srzednicki, G., & Craske, J. (2007). Effects of drying treatments on the composition of volatile compounds in dried nectarines. Drying Technology, 25, 877–881.CrossRefGoogle Scholar
  106. Sutar, P. P., & Prasad, S. (2007). Modeling fluidized bed drying of osmotically dehydrated onion slices and product quality evaluation. Transactions of the ASABE, 51(2), 567–572.Google Scholar
  107. Tang, Z., & Cenkowski, S. (2001). Equilibrium moisture content of spent grain in superheated steam under atmospheric pressure. Transactions of the ASAE., 44(5), 1261–1264.Google Scholar
  108. Tang, Z., Cenkowski, S., & Muir, W. E. (2000). Dehydration of sugar-beet pulp in superheated steam and hot air. Transactions of the ASAE, 43(3), 685–689.Google Scholar
  109. Tatemoto, Y., Kimura, R., Iyota, H., & Yamagata, J. (2009). Effect of humidity on drying of porous materials in fluidized bed under reduced pressure. Drying Technology, 27, 437–444.CrossRefGoogle Scholar
  110. Tewari, J., Dixit, V., & Malik, K. (2009). On-line monitoring of residual solvent during the pharmaceutical drying process using non-contact infrared sensor: A process analytical technology (PAT) approach. Sensors and Actuators B: Chemical, 144, 104–111.CrossRefGoogle Scholar
  111. Thakur, A. K., & Gupta, A. K. (2006). Stationary versus fluidized-bed drying of high-moisture paddy with rest period. Drying Technology, 24, 1443–1456.CrossRefGoogle Scholar
  112. Thomkapanich, O., Suvarnakuta, P., & Devahastin, S. (2007). Study of intermittent low-pressure superheated steam and vacuum drying of a heat-sensitive material. Drying Technology, 25, 205–223.CrossRefGoogle Scholar
  113. Tsuruta, T., & Hayashi, T. (2007). Internal resistance to water mobility in seafood during warm air drying and microwave–vacuum drying. Drying Technology, 25, 1393–1399.CrossRefGoogle Scholar
  114. Tuyen, T. T., Truong, V., Fukai, S., & Bhandari, B. (2009). Effects of high-temperature fluidized bed drying and tempering on kernel cracking and milling quality of Vietnamese rice varieties. Drying Technology, 27, 486–494.CrossRefGoogle Scholar
  115. Uengkimbuan, N., Soponronnarit, S., Prachayawarakorn, S., & Nathkaranakule, A. (2006). A comparative study of pork drying using superheated steam and hot air. Drying Technology, 24, 1665–1672.CrossRefGoogle Scholar
  116. Vadivambala, R., & Jayas, D. S. (2007). Changes in quality of microwavenext term-treated agricultural products—A review. Biosystems Engineering, 98, 1–16.CrossRefGoogle Scholar
  117. van Deventer, H. C., & Heijmans, R. M. H. (2001). Drying with superheated steam. Drying Technology, 19, 2033–2045.CrossRefGoogle Scholar
  118. Wang, W., & Chen, G. (2005). Theoretical study on microwave freeze-drying of an aqueous pharmaceutical excipient with the aid of dielectric material. Drying Technology, 23, 2147–2168.CrossRefGoogle Scholar
  119. Wang, R., Zhang, M., Mujumdar, A. S., & Sun, J. C. (2009). Microwave freeze-drying characteristics and sensory quality of instant vegetable soup. Drying Technology, 27, 962–968.CrossRefGoogle Scholar
  120. Witrowa-Rajchert, D., & Rzaca, M. (2009). Effect of drying method on the microstructure and physical properties of dried apples. Drying Technology, 27, 903–909.CrossRefGoogle Scholar
  121. Yamsaengsung, R., & Sattho, T. (2008). Superheated steam vacuum drying of rubberwood. Drying Technology, 26, 798–805.CrossRefGoogle Scholar
  122. Yonsawatdigul, J., & Gunasekaran, S. (1996). Microwave–vacuum drying of cranberries: Part II. Quality evaluation. Journal of Food Processing and Preservation, 20, 145–156.CrossRefGoogle Scholar
  123. Zhang, M., Tang, J., Mujumdar, A. S., & Wang, S. (2006). Trends in microwave related drying of fruits and vegetable. Trends in Food Science and Technology, 17, 524–534.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Chemical and Environmental Engineering, Faculty of EngineeringThe University of Nottingham, Malaysia CampusSemenyihMalaysia

Personalised recommendations