Skip to main content
Log in

Cheese-Matrix Characteristics During Heating and Cheese Melting Temperature Prediction by Synchronous Fluorescence and Mid-infrared Spectroscopies

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The structure and rheology characteristics of Comté (hard cheese) and Raclette (semihard cheese) cheeses as a function of temperature were investigated using dynamic testing rheology and mid-infrared and synchronous front-face fluorescence spectroscopies. The storage modulus (G′), the loss modulus (G″), and the complex viscosity (η*) decreased while strain and phase angle (tan δ) increased as the temperature increased from 20 to 80 °C. SF (250–500 nm with Δλ = 80) and MIR (3,000–2,800 (fat region), 1,700–1,500 (protein region), and 1,500–900 cm−1 (fingerprint region)) spectra were recorded on cheese samples at 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, and 80 °C. The results showed that each spectroscopic technique provided relevant information related to the cheese protein and fat structures during melting, allowing the investigation of structural changes. In addition, the melting temperatures of cheese matrices and fats of the two cheeses were determined from the dynamic rheology data, SF spectra, and MIR spectra. Similar temperatures were obtained whatever the technique, since values of about 60 and 31 °C were obtained for matrix and fat melting temperatures of Comté and Raclette cheeses, respectively. No significant difference was observed between the results obtained with the three methods (significance level of 5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ak, M. M., & Gunasekaran, S. (1992). Stress–strain curve analysis of cheddar cheese under uniaxial compression. Journal of Food Science, 57(5), 1078–1081.

    Article  Google Scholar 

  • Alexandrakis, D., Downey, G. & Scannell, A. G. M. (2010). Rapid non-destructive detection of spoilage of intact chicken breast muscle using near-infrared and Fourier transform mid-infrared spectroscopy and multivariate statistics. Food and Bioprocess Technology, doi:10.1007/s11947-009-0298-4.

  • Arnott, D. R., Morris, H. A., & Combs, W. B. (1957). Effect of certain chemical factors on the melting quality of process cheese. Journal of Dairy Science, 40(8), 957–963.

    Article  CAS  Google Scholar 

  • Bellamy, L. J. (1975). The infrared spectra of complex molecules. New York: Wiley.

    Google Scholar 

  • Belton, P. (2000). Spectroscopic methods for authentication—An overview. Biotechnology Agronomy Society & Environment, 4(4), 204–207.

    CAS  Google Scholar 

  • Bertola, N. C., Bevilacqua, A. E., & Zaritzky, N. E. (1992). Proteolytic and rheological evaluation of maturation of tybo argentino cheese. Journal of Dairy Science, 75(12), 3273–3281.

    Article  Google Scholar 

  • Bertrand, D., Lila, L., Furtoss, V., Robert, P., & Downey, G. (1987). Application of principal component analysis to the prediction of Lucerne forage protein content and in vitro dry matter digestibility by NIR spectroscopy. Journal of the Science of Food and Agriculture, 41(4), 299–307.

    Article  CAS  Google Scholar 

  • Birlouez-Aragon, I., Sabat, P., & Gouti, N. (2002). A new method for discriminating milk heat treatment. International Dairy Journal, 12(1), 59–67.

    Article  CAS  Google Scholar 

  • Boubellouta, T., & Dufour, E. (2008). Effects of mild heating and acidification on the molecular structure of milk components as investigated by synchronous front-face fluorescence spectroscopy coupled with parallel factor analysis. Applied Spectroscopy, 62(5), 490–496.

    Article  CAS  Google Scholar 

  • Boubellouta, T., Galtier, V., & Dufour, É. (2009). Effects of added minerals (calcium, phosphate and citrate) on the molecular structure of skim-milk as investigated by mid-infrared and synchronous fluorescence spectroscopies coupled with chemometrics. Applied Spectroscopy, 63, 95–102.

    Article  Google Scholar 

  • Bowland, E. L., & Foegeding, E. A. (2001). Small strain oscillatory shear and microstructural analyses of a model processed cheese. Journal of Dairy Science, 84(11), 2372–2380.

    Article  CAS  Google Scholar 

  • Bugaud, C., Buchin, S., Noël, Y., Tessier, L., Pochet, S., Martin, B., et al. (2001). Relationships between Abondance cheese texture, its composition and that of milk produced by cows grazing different types of pastures. Lait, 81(5), 593–607.

    Article  CAS  Google Scholar 

  • Campanella OH, Popplewell LM, Rosenau JR & Peleg M. (1987). Elongational viscosity measurements of melting American process cheese. Journal of Food Science, 52(5), 1249–1251.

    Article  Google Scholar 

  • Casal, H. L., & Mantsch, H. H. (1984). Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochimica et Biophysica Acta (BBA)—Reviews on Biomembranes, 779(4), 381–401.

    Article  CAS  Google Scholar 

  • Contreras, M. P., Avula, R. Y., & Singh, R. K. (2010). Evaluation of nano zinc (ZnO) for surface enhancement of ATR–FTIR spectra of butter and spread. Food and Bioprocess Technology, doi:10.1007/s11947-009-0237-4.

  • Divya, O., & Mishra, A. K. (2007). Combining synchronous fluorescence spectroscopy with multivariate methods for the analysis of petrol-kerosene mixtures. Talanta, 72(1), 43–48.

    Article  CAS  Google Scholar 

  • Dufour, E., Mazerolles, G., Devaux, M. F., Duboz, G., Duployer, M. H., & Mouhous Riou, N. (2000). Phase transition of triglycerides during semi-hard cheese ripening. International Dairy Journal, 10(1–2), 81–93.

    Article  CAS  Google Scholar 

  • Dufour, É., & Riaublanc, A. (1997). Potentiality of spectroscopic methods for the characterisation of dairy products: Front-face fluorescence study of raw, heated and homogenised milks. Lait, 77(6), 657–670.

    Article  CAS  Google Scholar 

  • Famelart, M.-H., Le Graet, Y., Michel, F., Richoux, R., & Riaublanc, A. (2002). Evaluation of the methods of measurement for functional properties of Emmental cheeses from the west of France. Lait, 82(2), 225–245.

    Article  CAS  Google Scholar 

  • Foster, K. D., Bronlund, J. E., & Paterson, A. H. J. (2005). The contribution of milk fat towards the caking of dairy powders. International Dairy Journal, 15(1), 85–91.

    Article  CAS  Google Scholar 

  • Herbert, S., Mouhous Riou, N., Devaux, M. F., Riaublanc, A., Bouchet, B., Gallant, D. J., et al. (2000). Monitoring the identity and the structure of soft cheeses by fluorescence spectroscopy. Lait, 80(6), 621–634.

    Article  CAS  Google Scholar 

  • Herbert, S., Riaublanc, A., Bouchet, B., Gallant, D. J., & Dufour, E. (1999). Fluorescence spectroscopy investigation of acid-or rennet-induced coagulation of milk. Journal of Dairy Science, 82(10), 2056–2062.

    Article  CAS  Google Scholar 

  • Jaros, D., Ginzinger, W., Tschager, E., Mayer, H. K., & Rohm, H. (2000). Effects of water addition on composition and fracture properties of Emmental cheese. Lait, 80, 621–634.

    Article  Google Scholar 

  • Jollife, I. T. (1986). Principal component analysis. New York: Springer.

    Google Scholar 

  • Karoui, R., Bosset, J.-O., Mazerolles, G., Kulmyrzaev, A., & Dufour, É. (2005). Monitoring the geographic origin of both experimental French Jura hard cheeses and Swiss Gruyère and L'Etivaz PDO cheeses using mid-infrared and fluorescence spectroscopies: a preliminary investigation. International Dairy Journal, 15(3), 275–286.

    Article  CAS  Google Scholar 

  • Karoui, R., & Dufour, É. (2006). Prediction of the rheology parameters of ripened semi-hard cheeses using fluorescence spectra in the UV and visible ranges recorded at a young stage. International Dairy Journal, 16, 1490–1497.

    Article  CAS  Google Scholar 

  • Karoui, R., Dufour, É., & De Baerdemaeker, J. (2006). Common components and specific weights analysis: A tool for monitoring the molecular structure of semi-hard cheese throughout ripening. Analytica Chimica Acta, 572(1), 125–133.

    Article  CAS  Google Scholar 

  • Karoui, R., Laguet, A., & Dufour, É. (2003). Fluorescence spectroscopy: A tool for the investigation of cheese melting—Correlation with rheological characteristics. Lait, 83, 251–264.

    Article  CAS  Google Scholar 

  • Karoui, R., Mazerolles, G., Bosset, J.-O., de Baerdemaeker, J., & Dufour, E. (2007). Utilisation of mid-infrared spectroscopy for determination of the geographic origin of Gruyère PDO and L'Etivaz PDO Swiss cheeses. Food Chemistry, 105(2), 847–854.

    Article  CAS  Google Scholar 

  • Karoui, R., Nicolaï, B., & De Baerdemaeker, J. (2008). Monitoring the egg freshness during storage under modified atmosphere by fluorescence spectroscopy. Food and Bioprocess Technology, 1, 346–356.

    Article  Google Scholar 

  • Konstance, R. P., & Holsinger, V. H. (1992). Development of rheological test methods for cheese. Food Technology, 46(1), 105–109.

    Google Scholar 

  • Kulmyrzaev, A., & Dufour, E. (2008). Relations between spectral and physicochemical properties of cheese, milk, and whey examined using multidimensional analysis. Food and Bioprocess Technology, 3, 247–256. doi:10.1007/s11947-008-0074-x.

    Article  Google Scholar 

  • Kuo, M. I., Wang, Y. C., & Gunasekaran, S. (2000). A viscoelasticity index for cheese meltability evaluation. Journal of Dairy Science, 83(3), 412–417.

    Article  CAS  Google Scholar 

  • Lawrence, R. C., Gilles, J., & Creamer, L. K. (1983). The relation between cheese texture and flavour. New Zealand Journal of Dairy Science and Technology, 18, 175–190.

    CAS  Google Scholar 

  • Lebecque, A., Laguet, A., Devaux, M. F., & Dufour, E. (2001). Delineation of the texture of Salers cheese by sensory analysis and physical methods. Lait, 81(5), 609–623.

    Article  Google Scholar 

  • Lee, C.-H., Imoto, E. M., & Rha, C. (1978). Evaluation of cheese texture. Journal of Food Science, 43(5), 1600–1605.

    Article  Google Scholar 

  • Liu, F., He, Y., Wang, L., & Sun, G. (2010). Detection of organic acids and pH of fruit vinegars using near-infrared spectroscopy and multivariate calibration. Food and Bioprocess Technology. doi:10.1007/s11947-009-0240-9.

  • Mazerolles, G., Devaux, M. F., Duboz, G., Duployer, M. H., Mouhous Riou, N., & Dufour, E. (2001). Infrared and fluorescence spectroscopy for monitoring protein structure and interaction changes during cheese ripening. Lait, 81, 509–527.

    Article  CAS  Google Scholar 

  • Mazerolles, G., Devaux, M. F., Dufour, E., Qannari, E. M., & Courcoux, P. (2002). Chemometric methods for the coupling of spectroscopic techniques and for the extraction of the relevant information contained in the spectral data tables. Chemometrics and Intelligent Laboratory Systems, 63(1), 57–68.

    Article  CAS  Google Scholar 

  • Mazerolles, G., Hanafi, M., Dufour, E., Bertrand, D., & Qannari, E. M. (2006). Common components and specific weights analysis: A chemometric method for dealing with complexity of food products. Chemometrics and Intelligent Laboratory Systems, 81(1), 41–49.

    Article  CAS  Google Scholar 

  • Meurens, M., Baeten, V., He Yan, S., Mignolet, E., & Larondelle, Y. (2005). Determination of the conjugated linoleic acid in cow’s milk fat by Fourier transform Raman spectroscopy. Journal of Agricultural and Food Chemistry, 53, 5831–5835.

    Article  CAS  Google Scholar 

  • Moberg, L., Robertsson, G., & Karlberg, B. (2001). Spectrofluorimetric determination of chlorophylls and phaeopigments using parallel factor analysis. Talanta, 54(1), 161–170.

    Article  CAS  Google Scholar 

  • Muthukumarappan, K., Wang, Y. C., & Gunasekaran, S. (1999). Estimating softening point of cheeses. Journal of Dairy Science, 82(11), 2280–2286.

    Article  CAS  Google Scholar 

  • Paradkar, M. M., Sivakesava, S., & Irudayaraj, J. (2003). Discrimination and classification of adulterants in maple syrup with the use of infrared spectroscopic techniques. Journal of the Science of Food and Agriculture, 83, 714–721.

    Article  CAS  Google Scholar 

  • Pram Nielsen, J., Bertrand, D., Micklander, E., Courcoux, P., & Munck, L. (2001). Study of NIR spectra, particle size distribution and chemical parameters of wheat flours: A multi-way approach. Journal of Near Infrared Spectroscopy, 9, 275–285.

    Article  Google Scholar 

  • Qannari, E. M., Wakeling, I., Courcoux, P., & MacFie, H. J. H. (2000). Defining the underlying sensory dimensions. Food Quality and Preference, 11(1–2), 151–154.

    Article  Google Scholar 

  • Rosenberg, M., Wang, Z., Chuang, S. L., & Shoemaker, C. F. (1995). Viscoelastic property changes in cheddar cheese during ripening. Journal of Food Science, 60(3), 640–644.

    Article  CAS  Google Scholar 

  • Shao, Y., & He, Y. (2009). Measurement of soluble solids content and pH of yogurt using visible/near infrared spectroscopy and chemometrics. Food and Bioprocess Technology, 2, 229–233.

    Article  CAS  Google Scholar 

  • Sivakesava, S., & Irudayaraj, J. (2001). A rapid spectroscopic technique for determining honey adulteration with corn syrup. Journal of Food Science, 66(6), 787–791.

    Article  CAS  Google Scholar 

  • Tang, Y.-J., Chen, Y., Chen, Z., Xie, T.-T., & Li, Y.-Q. (2008). Adsorption of a protein-porphyrin complex at a liquid–liquid interface studied by total internal reflection synchronous fluorescence spectroscopy. Analytica Chimica Acta, 614(1), 71–76.

    Article  CAS  Google Scholar 

  • Timms, R. E. (1980). The phase behavior and polymorphism of milk fat, milk fat fractions, and fully hardened milk fat. Australian Journal of Dairy Technology, 35, 47–53.

    CAS  Google Scholar 

  • Unemura, J. D. G., Cameron, D. G., & Mantsch, H. H. (1980). A Fourier transform infrared spectroscopic study of the molecular interaction of cholesterol with 1, 2 dipalmitoyl-sn-glycero-3-phosphocholine. Biochimica et Biophysica Acta, 602, 32–44.

    Article  Google Scholar 

  • Vassal, L., Monnet, V., Le Bars, D., Roux, C., & Gripon, J. C. (1987). Relation entre le pH, la composition chimique et la texture des fromages de type Camembert. Lait, 67(2), 173–185.

    Article  Google Scholar 

  • Woodcock, T., Fagan, C. C., O’Donnell, C. P., & Downey, G. (2008). Application of near and mid-infrared spectroscopy to determine cheese quality and authenticity. Food and Bioprocess Technology, 1, 117–129.

    Article  Google Scholar 

  • Zaïdi, F., Rouissi, H., Dridi, S., Kammoun, M., De Baerdemaeker, J., & Karoui, R. (2008). Front-face fluorescence spectroscopy as a rapid and non-destructive tool for differentiating between Sicilo–Sarde and Comisana ewe’s milk during lactation period: A preliminary study. Food and Bioprocess Technology, 1, 143–151.

    Article  Google Scholar 

  • Zhou, Q., Sun, S.-Q., Yu, L., Xu, C.-H., Noda, I., & Zhang, X.-R. (2006). Sequential changes of main components in different kinds of milk powders using two-dimensional infrared correlation analysis. Journal of Molecular Structure, 799(1–3), 77–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Dufour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boubellouta, T., Dufour, É. Cheese-Matrix Characteristics During Heating and Cheese Melting Temperature Prediction by Synchronous Fluorescence and Mid-infrared Spectroscopies. Food Bioprocess Technol 5, 273–284 (2012). https://doi.org/10.1007/s11947-010-0337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0337-1

Keywords

Navigation