Skip to main content
Log in

Extraction of Bioactive Compounds from Milled Grape Canes (Vitis vinifera) Using a Pressurized Low-Polarity Water Extractor

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Trans-resveratrol and trans-ε-viniferin were extracted from milled grape canes using pressurized low-polarity water. The effects of temperature were significant for both compounds (p ≤ 0.05): extraction at 160 °C resulted in a 40% loss of trans-resveratrol compared to 95 °C while reduction of trans-ε-viniferin at both temperatures remained at 30%. Increasing ethanol concentration from 0% to 25% increased the extraction of total phenolics and trans-ε-viniferin by 44% and 489%, respectively. Solvent flow rate also influenced trans-ε-viniferin extraction. Antioxidant activity showed a strong correlation with total phenolic content of the extracts, and the two target phenolic compounds. Except for the modifier concentration, the extraction parameters studied were not statistically significant with respect to the antioxidant activity of extracts (p > 0.05). Effective diffusivities of trans-resveratrol multiplied from 3.3 × 10−11 to 10.4 × 10−11 m2/s by three times with increasing temperature. The modified Gompertz equation satisfactorily explained the extraction of the stilbenes investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C :

Solute concentration at any location in the particle at time t, mg/mL

C i :

Initial solute concentration, mg/mL

D eff :

Effective diffusivity, m2/s

D o :

Initial diffusivity, m2/s

t :

Extraction time, s

r :

Radial distance coordinate from centre of spherical particle, m

R :

Average particle radius, m

M t :

Total amount of solute removed from grape cane at time t, mg/g dw

M :

Maximum amount of solute extracted at equilibrium, mg/g dw

y :

Total amount of phenolic compound extracted from grape cane sample at time t, mg/g dw

y :

Maximum amount of phenolic compound extractable at equilibrium, mg/g dw

m :

Maximum extraction rate defined as the tangent in the inflection point, mg/(g·min)

e :

Irrational constant (exp(1) = 2.718…)

λ :

Time period, min

E a :

Activation energy for diffusion, kJ/mol

R :

Universal gas constant, kJ/(mol·K)

T :

Absolute temperature, K

References

  • Alonso-Salces, R.-M., Korta, E., Barranco, A., Berrueta, L.-A., Gallo, B., & Vicente, F. (2001). Pressurized liquid extraction for the determination of polyphenols in apple. Journal of Chromatography A, 933, 37–43.

    Article  CAS  Google Scholar 

  • Avila-Sosa, R., Gastelum-Franco, M.-G., Camacho-Davila, A., Torres-Munoz, J.-V., & Nevarez-Moorillon, G.-V. (2008). Extracts of Mexican oregano (Lippia berlandieri Schauer) with antioxidant and antimicrobial activity. Food and Bioprocess Technology, doi:10.1007/s11947-008-0085-7. in press.

    Google Scholar 

  • Bidchol, A.-M., Wilfred, A., Abhijna, P., & Harish, R. (2009). Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italica. Food and Bioprocess Technology, doi:10.1007/s11947-009-0196-9. in press.

    Google Scholar 

  • Cacace, J.-E., & Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59, 379–389.

    Article  Google Scholar 

  • Cacace, J.-E., & Mazza, G. (2006). Pressurized low polarity water extraction of lignans from whole flaxseed. Journal of Food Engineering, 77, 1087–1095.

    Article  CAS  Google Scholar 

  • Cantos, E., Espín, J.-C., & Tomás-Barberán, F.-A. (2002). Postharvest stilbene-enrichment of red and white table grape varieties using UV-C irradiation pulses. Journal of Agricultural and Food Chemistry, 50, 6322–6329.

    Article  CAS  Google Scholar 

  • Cao, G., Sofic, E., & Prior, R. L. (1997). Antioxidant and prooxidant behavior of flavonoids: Structure–activity relationship. Free Radical Biology and Medicine, 22, 749–760.

    Article  CAS  Google Scholar 

  • Carabias-Martínez, R., Rodríguez-Gonzalo, E., Revilla-Ruiz, P., & Hernández-Méndez, J. (2005). Pressurized liquid extraction in the analysis of food and biological samples. Journal of Chromatography A, 1089, 1–17.

    Article  Google Scholar 

  • Choi, M.-P.-K., Chan, K.-K.-C., Leung, H.-W., & Huie, C.-W. (2003). Pressurized liquid extraction of active ingredients (ginsenosides) from medicinal plants using non-ionic surfactant solutions. Journal of Chromatography A, 983, 153–162.

    Article  CAS  Google Scholar 

  • Cussler, E.-L. (1984). Diffusion: Mass transfer in fluid system (pp. 146–177). Cambridge: Cambridge University Press.

    Google Scholar 

  • Das, H., & Singh, S.-K. (2004). Useful byproducts from cellulosic wastes of agriculture and food industry: A critical appraisal. Critical Reviews in Food Science and Nutrition, 44, 77–89.

    Article  Google Scholar 

  • Frank, T.-C., Downey, J.-R., & Gupta, S.-K. (1999). Quickly screen solvent for organic solids. Chemical Engineering Progress, 95, 41–46.

    CAS  Google Scholar 

  • Fukumoto, L.-R., & Mazza, G. (2000). Assessing antioxidant and prooxidant activity of phenolic compounds. Journal of Agricultural and Food Chemistry, 48, 3597–3604.

    Article  CAS  Google Scholar 

  • Gertenbach, D.-D. (2002). Solid-liquid extraction technologies for manufacturing nutraceuticals. In Shi Mazza Le Maguer (Ed.), Functional foods: Biochemical and processing aspects, vol. 2 (pp. 331–366). New York: CRC.

    Google Scholar 

  • Grunert, K.-G. (2005). Food quality and safety: Consumer perception and demand. European Review of Agricultural Economics, 32(3), 369–391.

    Article  Google Scholar 

  • Halliwell, B., & Gutteridge, J.-M.-C. (2000). Free radicals in biology and medicine. Oxford: Oxford University Press.

    Google Scholar 

  • Herrero, M., Cifuentes, A., & Ibanez, E. (2006). Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chemistry, 98, 136–148.

    Article  CAS  Google Scholar 

  • Ho, C.-H.-L., Cacace, J.-E., & Mazza, G. (2008). Mass transfer during pressurized low polarity water extraction of lignans from flaxseed meal. Journal of Food Engineering, 89, 64–71.

    Article  Google Scholar 

  • Howard, L., & Pandjaitan, N. (2008). Pressurized liquid extraction of flavonoids from spinach. Journal of Food Science, 73, 151–157.

    Article  Google Scholar 

  • Jean-Denis, J.-B., Pezet, R., & Tabacchi, R. (2006). Rapid analysis of stilbenes and derivatives from downy mildew-infected grapevine leaves by liquid chromatography-atmospheric pressure photoionisation mass spectrometry. Journal of Chromatography A, 1112, 263–268.

    Article  CAS  Google Scholar 

  • Ju, Z.-Y., & Howard, L.-R. (2005). Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. Journal of Food Science, 70, 270–276.

    Article  Google Scholar 

  • Karacabey, E., & Mazza, G. (2008). Optimization of solid-liquid extraction of resveratrol and other phenolic compounds from milled grape canes (vitis vinifera). Journal of Agricultural and Food Chemistry, 56, 6318–6325.

    Article  CAS  Google Scholar 

  • Karacabey, E., & Mazza, G. (2010). Optimisation of antioxidant activity of grape cane extracts using response surface methodology. Food Chemistry, 119, 343–348.

    Article  CAS  Google Scholar 

  • Kawamura, F., Kikuchi, Y., Ohira, T., & Yatagai, M. (1999). Accelerated solvent extraction of paclitaxel and related compounds from the bark of Taxus cuspidata. Journal of Nattural Products, 62, 244–247.

    Article  CAS  Google Scholar 

  • Khiari, Z., Makris, D.-P., & Kefalas, P. (2007). An investigation on the recovery of antioxidant phenolics from onion solid wastes employing water/ethanol-based solvent systems. Food and Bioprocess Technology, doi:10.1007/s11947-007-0044-8. in press.

    Google Scholar 

  • Kinsella, J.-E., Frankel, E., German, B., & Kanner, J. (1993). Possible mechanisms for the protective role of antioxidants in wine and plant foods. Food Technology, 47, 85–89.

    CAS  Google Scholar 

  • Lien, E.-J., Ren, S., Bui, H., & Wang, R. (1999). Quantitative structure–activity relationship analysis of phenolic antioxidants. Free Radical Biology and Medicine, 26, 285–294.

    Article  CAS  Google Scholar 

  • Lou, X., Janssen, H., & Cramers, C.-A. (1997). Parameters affecting the accelerated solvent extraction of polymeric samples. Analytical Chemistry, 69, 1598–1603.

    Article  CAS  Google Scholar 

  • Makris, D.-P., Boskou, G., & Andrikopoulos, N.-K. (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis, 20, 125–132.

    Article  CAS  Google Scholar 

  • Mazza G, and Cacace JE (2005) Extraction of phytochemicals. US Patent Application. Pub. No. US 2007/0014912 A1; Pub. Date, Jan 18, 2007; Filing Date: May 13, 2005.

  • Merken, H.-M., & Beecher, G.-R. (2000). Measurement of food flavonoids by high-performance liquid chromatography: A review. Journal of Agricultural and Food Chemistry, 48, 577–599.

    Article  CAS  Google Scholar 

  • Morales-Muñoz, S., Luque-García, J.-L., & Luque de Castro, M.-D. (2006). Pure and modified water assisted by auxiliary energies: An environmental friendly extractant for sample preparation. Analytica Chimica Acta, 557, 278–286.

    Article  Google Scholar 

  • Naczk, M., & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41, 1523–1542.

    Article  CAS  Google Scholar 

  • Ong, E.-S., Cheong, J.-S.-H., & Goh, D. (2006). Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials. Journal of Chromatography A, 1112, 92–102.

    Article  CAS  Google Scholar 

  • Pellegrini, N., Re, R., Yang, M., & Rice-Evans, C. (1999). Screening of dietary carotenoids and carotenoid-rich fruits extract for antioxidant activities applying 2, 2′-azinobis (3-ethylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods in Enzymology, 299, 379–389.

    Article  CAS  Google Scholar 

  • Piñeiro, Z., Palma, M., & Barroso, C.-G. (2004). Determination of catechins by means of extraction with pressurized liquids. Journal of Chromatography A, 1026, 19–23.

    Article  Google Scholar 

  • Piñeiro, Z., Palma, M., & Barroso, C.-G. (2006). Determination of trans-resveratrol in grapes by pressurised liquid extraction and fast high-performance liquid chromatography. Journal of Chromatography A, 1110, 61–65.

    Article  Google Scholar 

  • Pinelo, M., Sineiro, J., & Núñez, M.-J. (2006). Mass transfer during continuous solid–liquid extraction of antioxidants from grape byproducts. Journal of Food Engineering, 77, 57–63.

    Article  CAS  Google Scholar 

  • Rayne, S., Karacabey, E., & Mazza, G. (2008). Grape cane waste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phytopathogenic applications. Industrial Crops and Products, 27, 335–340.

    Article  CAS  Google Scholar 

  • Rice-Evans, C.-A., Miller, N.-J., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2, 152–159.

    Article  Google Scholar 

  • Richter, B.-E., Jones, B.-A., Ezzell, J.-L., Porter, N.-L., Avdalovic, N., & Pohl, C. (1996). Accelerated solvent extraction: A technique for sample preparation. Analytical Chemistry, 68, 1033–1039.

    Article  CAS  Google Scholar 

  • Schwartzberg, H.-G., & Chao, R.-Y. (1982). Solute diffusivities in leaching processes. Food Technology, 36, 73–86.

    CAS  Google Scholar 

  • Shahidi, F., & Wanasundara, P.-K.-J.-P.-D. (1992). Phenolic antioxidants. Critical Reviews in Food Science and Nutrition, 32, 67–103.

    Article  CAS  Google Scholar 

  • Spiro, M., & Selwood, R.-M. (1984). The kinetics and mechanicsm of caffeine infusion from coffee: The effect of the particle size. Journal of the Science of Food and Agriculture, 35, 915–924.

    Article  CAS  Google Scholar 

  • Spiro, M., & Siddique, S. (1981). Kinetics and equilibria of tea infusion. Analysis and partition constants of theaflavins, thearubigins, and caffeine in Koonsong Broken Pekoe. Journal of the Science of Food and Agriculture, 32, 1027–1032.

    Article  CAS  Google Scholar 

  • Tabart, J., Kevers, C., Sipel, A., Pincemail, J., Defraigne, J.-O., & Dommes, J. (2007). Optimisation of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chemistry, 105, 1268–1275.

    Article  CAS  Google Scholar 

  • Yu, J., Ahmedna, M., & Goktepe, I. (2005). Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chemistry, 90, 199–206.

    Article  CAS  Google Scholar 

  • Zwietering, M.-H., de Koos, J.-T., Hasenack, B.-E., de Wit, J.-C., & van't Riet, K. (1991). Modeling of bacterial growth as a function of temperature. Applied and Environmental Microbiology, 57, 1094–1101.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Lana Fukumoto for her technical support. We are also grateful to the T.R. Prime Ministry State Planning Organization (BAP-08-11-DPT2002K120510-GT-4), and the Canadian Biomass Innovation Network program (CBIN) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Mazza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karacabey, E., Mazza, G., Bayındırlı, L. et al. Extraction of Bioactive Compounds from Milled Grape Canes (Vitis vinifera) Using a Pressurized Low-Polarity Water Extractor. Food Bioprocess Technol 5, 359–371 (2012). https://doi.org/10.1007/s11947-009-0286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0286-8

Keywords

Navigation