Skip to main content
Log in

Pulsed Electric Field-Induced Structural Modification of Whey Protein Isolate

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Effects of pulsed electric fields (PEF) on structural modification and surface hydrophobicity were assessed for whey protein isolate (WPI) of protein concentrations (3% and 5%) using fluorescence spectroscopy. The effects of a factorial combination of electric field intensities (12, 16, and 20 kV cm−1) and number of pulses (10, 20, and 30) on the intrinsic tryptophan fluorescence intensity, extrinsic fluorescence intensity, and surface hydrophobicity of WPI were evaluated. PEF treatments of WPI resulted in increases in the intrinsic tryptophan fluorescence intensity and led to 2–4-nm red shifts in emission wavelengths, indicating changes in the polarity of tryptophan residues microenvironment in whey proteins from a less polar to a more polar environment. The extrinsic fluorescence intensity of WPI increased with PEF treatments, but with 2–4-nm blue shifts, indicating partial denaturation of WPI fractions and exposure of more hydrophobic regions under these PEF treatments. Thus, under the conditions studied, PEF treatments of WPI yielded increases in surface hydrophobicity. The study confirmed that PEF treatments resulted in whey protein structure modifications. These results suggested that controlled PEF could be applied to process liquids food including WPI ingredients and modify their structure and function in order to get desired food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alizadeh-Pasdar, N., & Li-Chan, E. C. Y. (2000). Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. Journal of Agricultural & Food Chemistry, 48(2), 328–334.

    Article  CAS  Google Scholar 

  • Alvarez, P. (2005) Effect of applied hydrostatic pressure on the structure and rheological properties of whey proteins. MSc. thesis. Department of Food Science, McGill University. Montreal, Canada. pp. 78–93

  • Barbosa-Cánovas, G. V., Góngora-Nieto, M. M., Pothakamury, U. R., & Swanson, B. G. (1999) PEF inactivation of vegetative cells, spores, and enzymes in foods. In: Preservation of foods with pulsed electric fields. San Diego, CA, USA: Academic Press, pp. 108–152

  • Barsotti, L., Dumay, E., Mu, T. H., Fernández-Díaz, M. D., & Cheftel, C. (2002). Effects of high voltage electric pulses on protein-based food constituents and structures. Trends in Food Science & Technology, 12, 136–144.

    Article  Google Scholar 

  • Considine, T., Patel, H. A., Anema, S. G., Singh, H., & Creamer, L. K. (2007). Interaction of milk proteins during heat and high hydrostatic pressure treatments. Innovative Food Science & Emerging Technologies, 8, 1–23.

    Article  CAS  Google Scholar 

  • Dissanayake, M., & Vasiljevic, T. (2009). Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. Journal of Dairy Science, 92, 1387–1397.

    Article  CAS  Google Scholar 

  • Eftink, M. R. (1991). Fluorescence techniques for studying protein structure. Methods of Biochemical Analysis, 35, 127–205.

    Article  CAS  Google Scholar 

  • Eftink, M. R. (1994). The use of fluorescence methods to monitor unfolding transitions in proteins. Biophysical Journal, 66, 482–501.

    Article  CAS  Google Scholar 

  • Fernández-Díaz, M. D., Barsotti, L., Dumay, E., & Cheftel, C. (2000). Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. Journal of Agricultural and Food Chemistry, 48(6), 2332–2339.

    Article  Google Scholar 

  • Garimella-Purna, S. K., Prow, L. A., & Metzger, L. E. (2005). Utilization of front-face fluorescence spectroscopy for analysis of process cheese functionality. Journal of Dairy Science, 88, 470–477.

    Article  Google Scholar 

  • Gatti, C. A., Risso, P. H., & Pires, M. S. (1995). Spectrofluorometric study on surface hydrophobicity of bovine casein micelles in suspension and during enzymic coagulation. Journal of Agricultural & Food Chemistry, 43, 2339–2344.

    Article  CAS  Google Scholar 

  • Genot, C., Tonetti, F., Montenay-Garestier, T., & Drapon, R. (1992). Front-face fluorescence applied to structural studies of proteins and lipid-protein interactions of visco-elastic food products. 1-Designing of front-face adaptor and validity of front-face fluorescence measurements. Sciences des Aliments, 12(2), 199–212.

    CAS  Google Scholar 

  • Hayakawa, I., Kajihara, J., Morikawa, K., Oda, M., & Fujio, Y. (1992). Denaturation of bovine serum albumin (BSA) and ovalbumin by high pressure, heat and chemicals. Journal of Food Science, 57, 288–292.

    Article  CAS  Google Scholar 

  • Heinz, V., Phillips, S. T., Zenker, M., & Knorr, D. (1999). Inactivation of Bacillus subtilis by high intensity pulsed electric fields under close to isothermal conditions. Food Biotechnology, 13, 155–168.

    Article  Google Scholar 

  • Herbert, S., Riaublanc, A., Bouchet, B., Gallant, D. J., & Dufour, E. (1999). Fluorescence spectroscopy investigation of acid- or rennet-induced coagulation of milk. Journal of Dairy Science, 82, 2056–2062.

    Article  CAS  Google Scholar 

  • Ho, S. Y., Mittal, G. S., & Cross, J. D. (1997). Effects of high field electric pulses on the activity of selected enzymes. Journal of Food Engineering, 31, 69–84.

    Article  Google Scholar 

  • Huppertz, T., Fox, P. F., de Kruif, K. G., & Kelly, A. L. (2005). High pressure-induced changes in bovine milk proteins: a review. Biochimica et Biophysica Acta, 1764, 593–598.

    Google Scholar 

  • Jean, K., Renan, M., Famelart, M., & Guyomarc’h, F. (2006). Structure and surface properties of the serum heat-induced protein aggregates isolated from heated skim milk. International Dairy Journal, 16, 303–315.

    Article  CAS  Google Scholar 

  • Jeantet, R., Baron, F., Nau, F., Roignant, M., & Brulé, G. (1999). High intensity pulsed electric fields applied to egg white: effect on Salmonella enteritidis inactivation and protein denaturation. Journal of Food Protection, 62(12), 1381–1386.

    CAS  Google Scholar 

  • Kato, A., & Nakai, S. (1980). Hydrophobicity determined by a fluorescence probe methods and its correlation with surface properties of proteins. Biochimica et Biophysica Acta, 624, 13–20.

    CAS  Google Scholar 

  • Kulmyrzaev, A., & Defour, E. (2002). Determination of lactulose and furosine in milk using front-face fluorescence spectroscopy. Lait, 82, 725–735.

    Article  CAS  Google Scholar 

  • Lee, W., Clark, S., & Swanson, B. G. (2006). Functional properties of high hydrostatic pressure-treated whey protein. Journal of Food Processing and Preservation, 30, 488–501.

    Article  CAS  Google Scholar 

  • Li, Y., Chen, Z., & Mo, H. (2007). Effects of pulsed electric fields on physicochemical properties of soybean protein isolates. Lebensmittel-Wissenschaft und-Technologie, 40, 1167–1175.

    CAS  Google Scholar 

  • Liu, X., Powers, J. R., Swanson, B. G., Hill, H. H., & Clark, S. (2005). Modification of whey protein concentrate hydrophobicity by high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 6, 310–317.

    Article  CAS  Google Scholar 

  • Loey, A. V., Verachtert, B., & Hendrickx, M. (2002). Effects of high electric field pulses on enzymes. Trends in Food Science & Technology, 12, 94–102.

    Article  Google Scholar 

  • Manderson, G. A., Hardman, M. J., & Creamer, L. K. (1998). Effect of heat treatment on bovine α-lactoglobulin A, B, and C explored using thiol availability and fluorescence. Journal of Agricultural & Food Chemistry, 47, 3617–3627.

    Article  Google Scholar 

  • Marcotte, M., Piette, J. P. G., & Ramaswamy, H. S. (1998). Electric conductivities of hydrocolloid solutions. Journal of Food Process Engineering, 21, 503–520.

    Article  Google Scholar 

  • Miller, M. S. (1994). Proteins as fat substitutes. In N. S. Hettiarachchy & G. R. Ziegler (Eds.), Protein functionality in food systems (pp. 435–466). New York: Dekker.

    Google Scholar 

  • Mine, Y. (1997). Effect of dry heat and mild alkaline treatment on functional properties of egg white proteins. Journal of Agricultural & Food Chemistry, 45(8), 2924–2928.

    Article  CAS  Google Scholar 

  • Moro, A., Gatti, C., & Delorenzi, N. (2001). Hydrophobicity of whey protein concentrates measured by fluorescence quenching and its relation with surface functional properties. Journal of Agricultural & Food Chemistry, 49(10), 4784–4789.

    Article  CAS  Google Scholar 

  • Nakai, S. (1983). Structure–function relationships of food proteins with an emphasis on the importance of protein hydrophobicity. Journal of Agricultural & Food Chemistry, 31, 676–683.

    Article  CAS  Google Scholar 

  • Perez, O. E., & Pilosof, A. M. R. (2004). Pulsed electric fields effects on the molecular structure and gelation of β-lactoglobulin concentrate and egg white. Food Research International, 37, 102–110.

    Article  CAS  Google Scholar 

  • Quass, D. W. (1997) Pulsed electric field processing in the food industry. A status report on pulsed electric field. Electric Power Research Institute. CR-109742. Palo Alto, CA, USA. pp. 23–35.

  • Reinoso, E., Mittal, G. S., & Lim, L.-T. (2008). Influence of whey protein composite coatings on plum (Prunus domestica L.) fruit quality. Food Bioprocess Technology, 1, 314–325. doi:10.1007/s11947-007-0014-1.

    Article  Google Scholar 

  • Relkin, P., Meylheuc, T., Launay, B., & Raynal, K. (1998). Heat-induced gelation of globulin protein mixtures. A DSC and scanning electron microscopic study. Journal of Thermal Analysis & Calorimetry, 51(3), 747–756.

    CAS  Google Scholar 

  • Semisotnov, G. V., Radionova, N. A., Razgulyaev, O. I., & Uversky, N. V. (1991). Study of the molten globule intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers, 31, 119–128.

    Article  CAS  Google Scholar 

  • Tanaka, N., Nakajima, K., & Kunugi, S. (1996). The pressure-induced structural change of bovine beta-lactalbumin as studied by a fluorescence hydrophobic probe. International Journal of Peptide & Protein Research, 48(3), 259–264.

    Article  CAS  Google Scholar 

  • Vega-Mercado, H. M., Martín-Belloso, O., Qin, B. L., Chang, F. J., Góngora-Nieto, M. M., Barbosa-Cánovas, G. V., et al. (1997). Non-thermal food preservation: pulsed electric fields. Trends in Food Science & Technology, 8(5), 151–157.

    Article  CAS  Google Scholar 

  • Voutsinas, L. P., & Nakai, S. (1983). A simple turbidimetric method for determining the fat binding capacity of proteins. Journal of Agricultural & Food Chemistry, 31, 58–63.

    Article  CAS  Google Scholar 

  • Wouters, P. C., Alvarez, I., & Raso, J. (2001). Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science & Technology, 12, 112–121.

    Article  CAS  Google Scholar 

  • Xiang, B. Y., Ngadi, M. O., Gachovska, T., & Simpson, B. K. (2007) Pulsed electric field treatment effects on rheological properties of soy milk. Technical papers. 2007 ASABE Annual Meeting, 17–21 June 2007, Minneapolis, MN, USA

  • Xiong, Y. L., Karl, A. D., & Liping, W. (1993). Thermal aggregation of β-lactoglobulin: effect of pH, ionic environment, and thiol reagent. Journal of Dairy Science, 76, 70–77.

    Article  CAS  Google Scholar 

  • Yang, J., Dunker, A. K., Powers, J. R., Clark, S., & Swanson, B. G. (2001). β-Lactoglobulin molten globule induced by high pressure. Journal of Agricultural & Food Chemistry, 49(7), 3236–3243.

    Article  CAS  Google Scholar 

  • Yeom, H. W., & Zhang, Q. H. (2001). Enzymatic inactivation by pulsed electric fields: a review. In G. V. Barbosa-Cánovas, Q. H. Zhang & G. Tabilo-Munizaga (Eds.), Pulsed electric fields in food processing: fundamental aspects and applications (pp. 57–63). Lancaster: Technomic.

    Google Scholar 

  • Zhang, H., Li, L., Tatsumi, E., & Isobe, S. (2005). High-pressure treatment effects on proteins in soy milk. Lebensmittel-Wissenschaft und-Technologie, 38, 7–14.

    Article  CAS  Google Scholar 

  • Zhang, R., Cheng, L., Wang, L., & Guan, Z. (2006). Inactivation effects of PEF on horseradish peroxidase (HRP) and pectinesterase (PE). IEEE Transactions on Plasma Science, 34(6), 2030–2036.

    Google Scholar 

  • Zhong, K., Hu, X., Chen, F., Wu, J., & Liao, X. (2005a). Inactivation and conformational change of pectinesterase induced by pulsed electric field. Transactions of the CSAE, 21(2), 149–152.

    CAS  Google Scholar 

  • Zhong, K., Hu, X., Zhao, G., Chen, F., & Liao, X. (2005b). Inactivation and conformational change of horseradish peroxidase induced by pulsed electric field. Food Chemistry, 92, 473–479.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Ngadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, B.Y., Ngadi, M.O., Ochoa-Martinez, L.A. et al. Pulsed Electric Field-Induced Structural Modification of Whey Protein Isolate. Food Bioprocess Technol 4, 1341–1348 (2011). https://doi.org/10.1007/s11947-009-0266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0266-z

Keywords

Navigation