Skip to main content
Log in

Production of Cutinase by Fusarium oxysporum on Brazilian Agricultural By-products and its Enantioselective Properties

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The production of cutinase by solid-state fermentation, using by-products such as wheat bran, rice bran, or soybean rind, was carried out using a Fusarium oxysporum strain. The fermentation process was optimized using a central composite design. The best conditions for cutinase production were achieved at 28–30 °C, with water added at 100–150% (w/w) after 72 h of incubation, in the range of 11.7–15.5 U/mL. In addition, the resolution of (R,S)-2-octanol and (R,S)-ibuprofen was performed to evaluate the enantioselectivity of the preparations of cutinase. The cutinase produced from the soybean rind attained higher yields and enantioselectivity in the resolution of (R,S)-2-octanol with octanoic acid in isooctane (E = 9.6). For the (R,S)-ibuprofen resolution, the cutinase produced from rice bran reached the best yields (E = 5.6). This work demonstrated that the enzymes can be produced from different media, such as from by-products or residues rich in carbon sources that do not necessarily present the same biochemical properties, which may be useful for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adeniran, H. A., Abiose, S. H., & Ogunsua, A. O. (2009). Production of fungal B amylase and amyloglucosidase on some Nigerian agricultural residues. Food and Bioprocess Technology, doi:10.1007/s11947-008-0141-3.

    Google Scholar 

  • Benjamim, S., & Pandey, A. (2000). Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation. Brazilian Archives of Biology and Technology, 43, 453–460.

    Article  Google Scholar 

  • Borreguero, I., Carvalho, C. M. L., Cabral, J. M. S., Sinisterra, J. V., & Alcantara, A. R. (2001). Enantioselective properties of Fusarium solani pisi cutinase on transesterification of acyclic diols: activity and stability evaluation. Journal of Molecular Catalysis B: Enzymatic, 11, 613–622.

    Article  CAS  Google Scholar 

  • Brandelli, A. (2008). Bacterial Keratinases: Useful Enzymes for Bioprocessing Agroindustrial Wastes and Beyond. Food and Bioprocess Technology, 1, 105–116.

    Article  Google Scholar 

  • Calado, C. R. C., Monteiro, S. M. S., Cabral, J. M. S., & Fonseca, L. P. (2002). Effect of pre-fermentation on the production of cutinase by a recombinant Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 93, 354–359.

    CAS  Google Scholar 

  • Cardenas, F., Castro-Alvarez, M. S., Sanchez-Monteiro, J. M. S., Sanchez, A., Sinisterra, J. V., Valmaseda, M., et al. (2001). Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme and Microbial Technology, 28, 145–154.

    Article  CAS  Google Scholar 

  • Carvalho, C. M. L., Aires-Barros, M. R., & Cabral, J. M. S. (1999). Cutinase: from molecular level to bioprocess development. Biotechnology and Bioengineering, 66, 17–34.

    Article  CAS  Google Scholar 

  • Carvalho, P. O., Contesini, F. J., Bizaco, R., Calaffati, S. A., & Macedo, G. A. (2006). Optimization of enantioselective resolution of racemic ibuprofen by native lipase from Aspergillus niger. Journal of Industrial Microbiology and Biotechnology, 33, 713–718.

    Article  CAS  Google Scholar 

  • Chen, C.-S., Fujimoto, Y., Girdaukas, G., & Sih, G. J. (1982). Quantitative analysis of biochemical kinetic resolutions enantiomers. Journal of the American Chemical Society, 104, 7294–7299.

    Article  CAS  Google Scholar 

  • Faber, K. (2000). Biotransformation in organic chemistry. Berlin: Springer.

    Google Scholar 

  • Garcia-Garza, J. A., & Fravel, D. R. (1998). Effect of relative humidity on sporulation of Fusarium oxysporum in various formulations and effect of water on spore movement through soil. Biological Control, 88, 544–549.

    Google Scholar 

  • Gonçalves, A. M., Aires-Barros, M. R., & Cabral, J. M. S. (2003). Interaction of an anionic surfactant with a recombinant cutinase from Fusarium solani pisi: a spectroscopy study. Enzyme and Microbial Technology, 32, 868–879.

    Article  Google Scholar 

  • Griffin, D. H. (1996). Fungal physiology (p. 472). New York: Wiley.

    Google Scholar 

  • Han, B., Ma, Y., Rombouts, F. M., & Nout, M. J. R. (2003). Effects of temperature and relative humidity on growth and enzyme production by Actinomucor elegans and Rhizopus oligosporus during sufu pehtze preparation. Food Chemistry, 81, 27–34.

    Article  CAS  Google Scholar 

  • Holker, U., Hofer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid state fermentation with fungi. Applied Microbiology and Biotechnology, 64, 175–186.

    Article  CAS  Google Scholar 

  • Hornby, J. M., Jacobitz-Kizzier, S. M., McNeel, D. J., Jensen, E. C., Treves, D. S., & Nickerson, K. W. (2004). Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Applied and Environmental Microbiology, 70, 1356–1359.

    Article  CAS  Google Scholar 

  • Kulkarni, R. K., & Nickerson, K. W. (1981). Nutritional control of dimorphism in Ceratocystis ulmi. Experimental Mycology, 5, 148–154.

    Article  CAS  Google Scholar 

  • Longhi, S., & Cambillau, C. (1999). Structure-activity of cutinase, a small lipolytic enzyme. Biochemistry and Biophysics Acta, 144, 185–196.

    Google Scholar 

  • Lu, W., Li, D., & Wu, Y. (2003). Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzyme and Microbial Technology, 32, 305–311.

    Article  CAS  Google Scholar 

  • Macedo, G. A., & Pio, T. F. (2005). A rapid screening method for cutinase producing microorganisms. Brazilian Journal of Microbiology, 36, 338–394.

    Article  Google Scholar 

  • Mannesse, M. L. M., Cox, R. C., Koops, B. C., Verheij, H. M., Haas, G. H., Egmong, M., et al. (1995). Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity. Biochemistry, 34, 6400–6407.

    Article  CAS  Google Scholar 

  • Mustranta, A. (1992). Use of lipase in the resolution of racemic ibuprofen. Applied Microbiology and Biotechnology, 38, 61–66.

    Article  CAS  Google Scholar 

  • Pio, T. F., & Macedo, G. A. (2007). Optimizing the production of cutinase by Fusarium oxysporum using response surface methodology. Journal of Industrial Microbiology and Biotechnology, 10, 101–111.

    Google Scholar 

  • Robinson, T., Singh, D., & Nigan, P. (2001). Solid-state fermentation: a promising microbial technology for secondary metabolite production. Applied Microbiology and Biotechnology, 55, 284–289.

    Article  CAS  Google Scholar 

  • Rodriguez, J. A., Mateos, J. C., Nungaray, J., González, V., Bhagnagar, T., Roussos, S., et al. (2006). Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochemistry, 41, 2264–2269.

    Article  CAS  Google Scholar 

  • Santos, M. M., Rosa, A. S., Dal’Boit, S., Mitchell, D. A., & Krieger, N. (2004). Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes? Bioresource Technology, 93, 261–268.

    Article  Google Scholar 

  • Suryanarayan, S. (2003). Current industrial practice in solid state fermentation for secondary metabolite production: the Biocon India experience. Biochemical Engineering Journal, 13, 189–195.

    Article  CAS  Google Scholar 

  • Szendefy, J., Szakacs, G., & Christopher, L. (2006). Potential of solid-state fermentation enzymes of Aspergillus oryzae in biobleaching of paper pulp. Enzyme and Microbial Technology, 39, 1354–1360.

    Article  CAS  Google Scholar 

  • Treichel, D., Oliveira, D., Mazutti, M. A., Di Luccio, M., & Oliveira, J. V. (2009). A review on microbial lipases production. Food and Bioprocess Technology, doi:10.1007/s11947-009-0202-2.

    Google Scholar 

  • Tyagi, S., & Pleiss, J. (2006). Biochemical profiling in silico—predicting substrate specificities of large enzyme families. Journal of Biotechnology, 124, 108–116.

    Article  CAS  Google Scholar 

  • Viniegra-Gonzalez, G., Favela-Torres, E., Aguilar, C. N., Romero-Gomez, S. D., Diaz-Godinez, G., & Augur, C. (2003). Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering Journal, 13, 157–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for their financial support and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela A. Macedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraga, L.P., Carvalho, P.O. & Macedo, G.A. Production of Cutinase by Fusarium oxysporum on Brazilian Agricultural By-products and its Enantioselective Properties. Food Bioprocess Technol 5, 138–146 (2012). https://doi.org/10.1007/s11947-009-0261-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0261-4

Keywords

Navigation