Skip to main content
Log in

Optimization of Corynebacterium glutamicum Glutamic Acid Production by Response Surface Methodology

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM) was used to evaluate the effects of fermentation parameters for glutamic acid (GA) production by Corynebacterium glutamicum CECT690 in submerged fermentation using palm date waste as substrate. To attain this purpose at the first stage, inoculum size, substrate concentration, penicillin concentration, phosphate concentration, and inoculum age were optimized for GA production. The next stage, the level of air flow rate in a 5-l fermenter (batch mode) which was run in optimized conditions was determined. The first stage gave the following results for the fermentation conditions optimized using RSM in 500-ml shake flasks: inoculum size 2% (v/v), substrate concentration 25% (w/v), penicillin concentration 1 U/ml, phosphate concentration 4 g/l, and inoculum age 10 h. Moreover, the maximum GA amount predicted by the model was 39.32 mg/ml. This was in agreement with the actual experimental value (36.64 mg/ml). In the second stage of the study, the amounts of GA were 118.75, 142.25, and 95.83 mg/ml in optimized conditions with the three levels of air flow rate of 0.6, 1.2, and 1.6 vvm, respectively. The present results demonstrate the potential of date waste juice as a substrate for producing GA by cultivation of C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou-Zeid, A. A., Baeshin, N. A., & Baghlaf, A. O. (1993). Utilization of date products in production of oxytetracycline by Streptomyces rimosus. Journal of Chemical Technology and Biotechnology, 58, 77–79.

    CAS  Google Scholar 

  • Aidoo, K. E., Tester, R. F., Morrison, J. E., & MacFarlane, D. (1996). The composition and microbial quality of pre-packed dates purchased in Grater Glasgow. International Journal of Food Science and Technology, 31, 433–438.

    Article  CAS  Google Scholar 

  • Anonymous. (1993). Waters AccQ-Tag chemistry package (Instruction manual). Millipore Water Chromatography. Available at: http://www.waters.com. Cited April 1993.

  • AOAC. (2000). Official methods of analysis of the Association of Official Analytical Chemist (17th ed.). USA: The Association of Official Analytical Chemist.

    Google Scholar 

  • Bankar, S.B., Blue, M. V., Singhal, R. S., & Ananthanarayan, L. (2008). Optimization of Aspergillus niger fermentation for the production of glucose oxidase. Food and Bioprocess Technology. doi:10.1007/s11947-007-0050-x.

  • Çalık, G., Ünlütabak, F., & Özdamar, T. H. (2001). Product and by-product distributions in glutamic acid fermentation by Brevibacterium flavum: effects of the oxygen transfer. Biochemical Engineering, 9, 91–101.

    Article  Google Scholar 

  • Chauhan, K., Trivedi, U., & Patel, K. C. (2007). Statistical screening of medium components by Placket–Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresource Technology, 98, 98–103.

    Article  CAS  Google Scholar 

  • Das, K., Anis, M., Mohd Azemi, B. M. N., & Ismail, N. (1995). Fermentation and recovery of glutamic acid from palm waste hydrolysate by ion-exchange resin column. Journal of Biotechnology and Bioengineering, 48, 551–555.

    Article  CAS  Google Scholar 

  • Davati, N., Hamidi-Esfahani, Z., & Shojaosadati, S. A. (2007). Study on producing possibility of amino acids from date palm wastes by two mutant Corynebacterium glutamicum CECT690 & CECT77. Iranian Journal of Food Science and Technology, 4, 55–64.

    Google Scholar 

  • Haaland, P. D. (1989). Statistical problem solving. In P. D. Haaland (Ed.), Experimental designs in biotechnology (pp. 61–82). New York: Marcel Dekker.

    Google Scholar 

  • Hashimoto, K., Kawasaki, H., Akazawa, K., Nakamura, J., Asakura, Y., Kudo, T., et al. (2006). Changes in composition and content of mycolic acids in glutamate-overproducing Corynebacterium glutamicum. Bioscience Biotechnology and Biochemistry, 70, 22–30.

    Article  CAS  Google Scholar 

  • Jyothi, A. N., Sasikiran, K., Nambisan, B., & Balagopalan, C. (2005). Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum. Process Biochemistry, 40, 3576–3579.

    Article  CAS  Google Scholar 

  • Kamel, B. S. (1979). Dates as a potential substrate for single cell protein production. Enzyme and Microbial Technology, 1, 180–182.

    Article  CAS  Google Scholar 

  • Khan, J. A., Abulnaja, K. O., Kumosani, T. A., & Abou-Zeid, A. A. (1995). Utilization of Soudi dates sugars in production of baker’s yeast. Bioresource Technology, 53, 63–66.

    Article  CAS  Google Scholar 

  • Kinoshita, S. (1985). Glutamic acid bacteria. In A. L. Demain & N. A. Solomon (Eds.), Biology of industrial micro-organisms (pp. 115–142). London: Benjamin/Cummings.

    Google Scholar 

  • Kusumoto, I. (2001). Industrial production of L-glutamine. Journal of Nutrition, 131, 2552S–2555S.

    CAS  Google Scholar 

  • Mamatha, S. S., Ravi, R., & Venkateswaran, G. (2008). Medium optimization of gamma linolenic aid production in Mucor rouxii CFR-G15 using RSM. Food and Bioprocess Technology, 1, 405–409. doi:10.1007/s11947-008-0103-9.

    Article  Google Scholar 

  • Mehaia, M. A., & Cheryan, M. (1991). Fermentation of date extracts to ethanol and vinegar in batch and continuous membrane reactors. Enzyme and Microbial Technology, 13, 257–261.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  • Morton, J. (1987). Date. In J. F. Morton (Ed.), Fruits of warm climates (pp. 5–11). Miami: Morton. ISBN: 0-9610184-1-0.

    Google Scholar 

  • Nampoothiri, K. M., & Pandey, A. (1996). Solid state fermentation for L-glutamic acid production using Brevibacterium sp. Biotechnology Letters, 18, 199–204.

    Article  CAS  Google Scholar 

  • Nampoothiri, K. M., & Pandey, A. (1999). Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion exchange resin column. Journal Review of Microbiology, 30, 258–264.

    Article  CAS  Google Scholar 

  • Nancib, N., Ghoul, M., Larous, L., Nancib, A., Adimi, L., Remmal, M., et al. (1999). Use of date products in production of the thermophilic dairy starter strain Streptococcus thermophilus. Bioresource Technology, 67, 291–295.

    Article  Google Scholar 

  • Nancib, N., Nancib, A., & Boudrant, J. (1997). Use of waste date products in the fermentative formation of baker’s yeast biomass by Saccharomyces cerevisiae. Bioresource Technology, 60, 67–71.

    Article  CAS  Google Scholar 

  • Nandakumar, R., Yoshimune, K., Wakayama, M., & Moriguchi, M. (2003). Review: microbial glutaminase: biochemistry, molecular approaches and applications in the food industry. Journal of Molecular Catalysis B: Enzymatic, 23, 87–100.

    Article  CAS  Google Scholar 

  • Parton, C., & Willis, P. (1990). Strain preservation, inoculum preparation and development. In B. McNeil & L. M. Harvey (Eds.), Fermentation: a practical approach (pp. 39–64). Oxford: IRL.

    Google Scholar 

  • Perego, P., Converti, A., & Del Borghi, M. (2003). Effects of temperature, inoculum size and starch hydrolyzate concentration on butanediol production by Bacillus licheniformis. Bioresource Technology, 89, 125–131.

    Article  CAS  Google Scholar 

  • Reddy, L. V. A., Wee, Y. J., Yun, J. S., & Ryu, H. W. (2008). Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches. Bioresource Technology, 99, 2242–2249.

    Article  CAS  Google Scholar 

  • Roukas, T., & Kotzekidou, P. (1991). Pretreatment of date syrup to increase citric acid production. Enzyme and Microbial Technology, 21, 273–276.

    Article  Google Scholar 

  • Sahari, M. A., Barzegar, M., & Radfar, R. (2007). Effect of varieties on the composition of dates (Phoenix dactylifera L.)—note. Food Science and Technology International, 13, 269–275.

    Article  CAS  Google Scholar 

  • Shankar, T. J., Sokhansanj, S., Bandyopadhyay, S., & Bawa, A. S. (2008). A case study on optimization of biomass flow during single-screw extrusion cooking using genetic algorithm (GA) and response surface method (RSM). Food and Bioprocess Technology. doi:10.1007/s11947-008-0172-9.

  • Shimizu, H., & Hirasawa, T. (2006). Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. Microbial Monographs, 5, 1–38.

    Article  Google Scholar 

  • Shukur, M. M. (1983). Determination of date moisture content: a review. Date Palm Journal, 2, 147–162.

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Department of Food Science and Technology in Tarbiat Modares University (Tehran, Iran) for financial support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Hamidi-Esfahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakkoli, M., Hamidi-Esfahani, Z. & Azizi, M.H. Optimization of Corynebacterium glutamicum Glutamic Acid Production by Response Surface Methodology. Food Bioprocess Technol 5, 92–99 (2012). https://doi.org/10.1007/s11947-009-0242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0242-7

Keywords

Navigation