Skip to main content
Log in

Desorption Isotherms and Net Isosteric Heat of Chestnut Flour and Starch

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The desorption isotherms of chestnut flour and chestnut starch were determined at different temperatures (20°C, 35°C, 50°C, and 65°C) using gravimetric method. Desorption isotherms of potato starch were also determined in order to establish a comparison against desorption isotherms of chestnut starch. Several saturated salt solutions were selected to generate different water activities in the range of 0.09 to 0.91. Obtained desorption isotherms were of type II, according to Brunauer’s classification. Three-parameter Brunauer–Emmett–Teller and Guggenheim–Anderson–de Boer (GAB) models satisfactorily fitted the experimental data for all systems studies, although the last one can be considered better based on obtained statistical parameters and because it is applicable in a broader water activity range. The average monolayer moisture content (kilograms per kilogram d.b.) calculated by GAB model was 0.059 ± 0.007 for chestnut flour, 0.103 ± 0.021 for chestnut starch, and 0.060 ± 0.028 for potato starch. The net isosteric sorption heat, calculated by means of Clausius–Clapeyron equation, decreased when moisture content increased. The maximum values of net isosteric sorption heat (kilojoules per mole) were approximately 27.5 for chestnut flour, 16.0 for chestnut starch, and 33.0 for potato starch in the range of temperature from 20°C to 50°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a w :

Water activity

C :

GAB (Eq. 2) parameter

C B :

BET (Eq. 1) parameter

E :

Mean relative percentage deviation modulus

E RMS :

Root mean square error (kg (kg d.b.)−1)

H :

Heat of GAB model (kJ mol−1)

h :

Sorption heat (kJ mol−1)

h L :

Heat of water condensation (kJ mol−1)

K :

GAB (Eq. 2) parameter

n :

Number of samples

N :

BET (Eq. 1) parameter

R :

Ideal gas constant (8.314 J (mol K)−1)

R 2 :

Coefficient of determination

T :

Absolute temperature (K)

X :

Equilibrium moisture content (kg (kg d.b.)−1)

cal:

Calculated

e:

Net isosteric

exp:

Experimental

M:

Monolayer of GAB model

MB:

Monolayer of BET model

N:

Multilayer

o:

Pre-exponential

References

  • Aboubakar, N. Y. N., Scher, J., & Mbofung, C. M. F. (2008). Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. Journal of Food Engineering, 86, 294–305.

    Article  CAS  Google Scholar 

  • Aguilera, J. M., & Stanley, D. W. (1999). Microstructural principles of food processing and engineering (pp. 373–411). Maryland: Aspen.

    Google Scholar 

  • Alexander, R. J. (1996). New starches for food application. Cereal food world, 41, 796–798.

    Google Scholar 

  • Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2004a). Water sorption isotherms of starch powders. Part 1: mathematical description of experimental data. Journal of Food Engineering, 61, 297–307.

    Article  Google Scholar 

  • Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2004b). Water sorption isotherms of starch powders. Part 2: Thermodynamic characteristics. Journal of Food Engineering, 62, 135–142.

    Article  Google Scholar 

  • Ando, H., Tang, H., Watanabe, K., & Mitsunaga, T. (2002). Some physicochemical properties of large, medium and small granule starches in fractions of wheat grain. Food Science and Technology Research, 8, 24–27.

    Article  CAS  Google Scholar 

  • AOAC. (1995). Official methods of analysis. Washington, DC: Association of Official Analytical Chemistry.

    Google Scholar 

  • Bellagha, S., Sahli, A., & Farhat, A. (2008). Desorption isotherms and isosteric heat of three Tunisian date cultivars. Food and Bioprocess Technology, 1, 270–275.

    Article  Google Scholar 

  • Brunauer, S., Emmet, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  CAS  Google Scholar 

  • Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the Van der Waals adsorption of gases. Journal of the American Chemical Society, 62, 1723–1732.

    Article  CAS  Google Scholar 

  • Demiate, I. M., Oetterer, M., & Wosiacki, G. (2001). Characterization of chestnut (Castanea sativa, Mill) starch for industrial utilization. Brazilian Archives of Biology and Technology, 44(1), 69–78.

    Article  CAS  Google Scholar 

  • Douzas, J. P., Marechal, P. A., Coquille, J. C., & Gervais, P. (1996). Microscopic study of starch gelatinization under high hydrostatic pressure. Journal of Agriculture and Food Chemistry, 44, 1403–1408.

    Article  Google Scholar 

  • Durakova, A. G., & Menkov, N. D. (2004). Moisture sorption characteristics of rice flour. Nahrung/Food, 48, 137–140.

    Article  Google Scholar 

  • FAO. (2009). <http://www.fao.org/infoods/directory_en.stm>

  • Fasina, O. O. (2006). Thermodynamic properties of sweet potato. Journal of Food Engineering, 75, 149–155.

    Article  Google Scholar 

  • Fortes, M., & Okos, M. R. (1980). Drying theories: Their bases and limitations as applied to food and grains. In A. S. Mujumdar (Ed.), Advances in drying, Vol 1 (pp. 119–154). New York: Hemisphere.

    Google Scholar 

  • Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards Section A, 81, 89–102.

    Google Scholar 

  • Jonquieres, A., & Fane, A. (1998). Modified BET models for modelling water vapour sorption in hydrophilic glassy polymers and systems deviating strongly from ideality. Journal of Applied Polymer Science, 67, 1415–1430.

    Article  CAS  Google Scholar 

  • Kim, S. S., & Bhowmik, S. R. (1994). Moisture sorption isotherms of concentrated yogurt and microwave vacuum dried yogurt powder. Journal of Food Engineering, 21, 157–175.

    Article  Google Scholar 

  • Leung, H. K. (1983). Water activity and other colligative properties of foods. In: ASAE annual meeting, paper no. 83-6508. Chicago, USA.

  • Lomauro, C. J., Bakshi, A. S., & Labuza, T. P. (1985). Evaluation of food moisture sorption isotherm equations. Part I. Fruit, vegetables and meat products. Lebensmittel Wissenschaft Technologie, 18, 111–115.

    Google Scholar 

  • Mataix, J., Mañas, M., & Llopis, J. (1998). Tabla de composición de alimentos españoles. Granada: University of Granada.

    Google Scholar 

  • McMinn, W. A. M., & Magee, T. R. A. (2003). Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering, 60, 155–157.

    Article  Google Scholar 

  • McMinn, W. A. M., Al-Muhtaseb, A. H., & Magee, T. R. A. (2004). Moisture sorption characteristics of starch gels. Part II: Thermodynamic properties. Journal of Food Process Engineering, 27, 213–227.

    Article  Google Scholar 

  • McMinn, W. A. M., Al-Muhtaseb, A. H., & Magee, T. R. A. (2005). Enthalpy–entropy compensation in sorption phenomena of starch materials. Food Research International, 38, 505–510.

    Article  CAS  Google Scholar 

  • Rebar, V., Fischbach, E. R., Apostolopoulos, D., & Kokini, J. L. (1984). Thermodynamics of water and ethanol adsorption on four starches as model biomass separation systems. Biotechnology and Bioengineering, 26(5), 513–517.

    Article  CAS  Google Scholar 

  • Scott, W. J. (1957). Water relations of foods spoilage microorganisms. Advances in Food Research, 7, 83–127.

    CAS  Google Scholar 

  • Scott, J. M., Hugh, J. C., & Colin, J. R. (1998). A simple and rapid colorimetric method for the determination of amylose in starch products. Starch, 50, 158–163.

    Article  Google Scholar 

  • Timmermann, E. O., Chirife, J., & Iglesias, H. A. (2001). Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering, 48, 19–31.

    Article  Google Scholar 

  • Urquhart, A. R. (1959). Differential enthalpy of sorption in dried fruits. Journal of Food Engineering, 14, 327–335.

    Google Scholar 

  • Van den Berg, C., & Bruin, S. (1981). Water activity and its estimation in food systems; theoretical aspects. In L. B. Rockland & C. F. Stewart (Eds.), Water activity: influences on food quality (pp. 1–61). New York: Academic.

    Google Scholar 

  • Vázquez, G., Chenlo, F., & Moreira, R. (2001). Modeling of desorption isotherms of chestnut: Influence of temperature and evaluation of isosteric heats. Drying Technology, 19(6), 1189–1199.

    Article  Google Scholar 

  • Weast, R. C. (1982). Handbook of chemistry and physics. Boca Raton: CRC.

    Google Scholar 

  • Yanniotis, S., Nikoletopoulos, P., Pappas, G. (1989). Sorption models for dried fruits. In: Proceedings of the 5th International Congress on Engineering and Food, Karlsruhe, Germany.

Download references

Acknowledgments

The authors acknowledge the financial support from the Ministerio de Educación y Ciencia of Spain and FEDER (CTQ 2007-62009/PPQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Moreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenlo, F., Moreira, R., Prieto, D.M. et al. Desorption Isotherms and Net Isosteric Heat of Chestnut Flour and Starch. Food Bioprocess Technol 4, 1497–1504 (2011). https://doi.org/10.1007/s11947-009-0239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0239-2

Keywords

Navigation