Food and Bioprocess Technology

, Volume 4, Issue 7, pp 1219–1227 | Cite as

Microwave-Assisted Extraction of Secoisolariciresinol Diglucoside—Method Development

  • Simona M. NemesEmail author
  • Valérie Orsat
Original Paper


An optimized microwave-assisted extraction (MAE) method was developed for extracting secoisolariciresinol diglucoside (SDG) from flaxseed. This paper presents the optimization of factors for maximizing the extraction yield of SDG. This work was conducted using the experimental domain identified in a previous study by means of screening designs, that is, samples of 1 g defatted flaxseed meal (DFM) were extracted with 50 ml NaOH of concentration of 0.5–1 M, at microwave power levels of 60–360 W, for 3–9 min, with the microwave power applied intermittently (power on 30 s/min) and continuously (power on 60 s/min). The MAE of SDG was maximized when 1 g DFM was extracted with 50 ml 0.5 M NaOH, at 135 W, for 3 min in intermittent power mode (power on 30 s/min). The optimized MAE achieved a 6% increase in the extraction yield (21.45 mg SDG per gram DFM) as opposed to a direct hydrolysis method (20.22 mg SDG per gram DFM). The MAE of SDG was governed by the microwave–NaOH interaction, which had a curvilinear dependence on the microwave power level, and linear dependence on the NaOH concentration. The microwave-induced effects accounted for a 10% increase in the SDG extraction yield (21.45 mg SDG per gram DFM) as opposed to a microwaveless control method (19.45 mg SDG per gram DFM). The optimized MAE method has good repeatability, a 97% recovery of the target compound; it is fast and efficient and can be used for precise quantification of SDG in flaxseed.


MAE SDG Flaxseed Lignan Phytoestrogen Response surface Optimization Central composite design 



The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and the Canada Foundation for Innovation (CFI) for the financial support.


  1. Boyaci, İ., Sumnu, G., & Sakiyan, O. (2008). Estimation of dielectric properties of cakes based on porosity, moisture content, and formulations using statistical methods and artificial neural networks. Food Bioprocess Technology, in press. doi: 10.1007/s11947-008-0064-z.
  2. Cha-um, W., Rattanadecho, P., Pakdee, W. (2009). Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: Influence of sample sizes, positions, and microwave power. Food Bioprocess Technology, in press. doi: 10.1007/s11947-009-0187-x.
  3. Chen, H. H., Xu, S. Y., & Wang, Z. (2006). Gelation properties of flaxseed gum. Journal of Food Engineering, 77, 295–303. doi: 10.1016/j.jfoodeng.2005.06.033.CrossRefGoogle Scholar
  4. Clavel, T., Doré, J., & Blaut, M. (2006). Bioavailability of lignans in human subjects. Nutrition Research Reviews, 19, 187–196. doi: 10.1017/S0954422407249704.CrossRefGoogle Scholar
  5. Dai, J., Yaylayan, V. A., & Raghavan, G. S. V. (1999). Extraction and colorimetric determination of azadirachtin-related limonoids in neem seed kernel. Journal of Agricultural and Food Chemistry, 47, 3738–42. doi: 10.1021/jf990227h.CrossRefGoogle Scholar
  6. Dai, J., Yaylayan, V. A., & Raghavan, G. S. V. (2001). Influence of operating parameters on the use of the microwave-assisted process (MAP) for the extraction of azadirachtin-related limonoids from neem (Azadirachta indica) under atmospheric pressure conditions. Journal of Agricultural and Food Chemistry, 49, 4584–4588. doi: 10.1021/jf010592k.CrossRefGoogle Scholar
  7. Davin, L. B., & Lewis, N. G. (2005). Dirigent phenoxy radical coupling: advances and challenges. Current Opinion in Biotechnology, 16, 398–406. doi: 10.1016/j.copbio.2005.06.010.CrossRefGoogle Scholar
  8. Eliasson, C., Kamal-Eldin, A., Andersson, R., & Aman, P. (2003). High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. Journal of Chromatography A, 1012, 151–159. doi: 10.1016/S0021-9673(03)01136-1.CrossRefGoogle Scholar
  9. Ford, J. D., Huang, K. S., Wang, H. B., Davin, L. B., & Lewis, N. G. (2001). Biosynthetic pathway to the cancer chemopreventive secoisolariciresinol diglucoside-hydroxymethyl glutaryl ester-linked lignan oligomers in flax (Linum usitatissimum) seed. Journal of Natural Products, 64, 1388–1397. doi: 10.1021/np010367x.CrossRefGoogle Scholar
  10. Gabriel, C., Gabriel, S., Grant, E. H., Halstead, B. S. J., & Mingos, D. M. P. (1998). Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27, 213–223. doi: 10.1039/a827213z.CrossRefGoogle Scholar
  11. Johnsson, P., Kamal-Eldin, A., Lundgren, L. N., & Aman, P. (2000). HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds. Journal of Agricultural and Food Chemistry, 48, 5216–5219. doi: 10.1021/jf0005871.CrossRefGoogle Scholar
  12. Johnsson, P., Peerlkamp, N., Kamal-Eldin, A., Andersson, R. E., Andersson, R., Lundgren, L. N., et al. (2002). Polymeric fractions containing phenol glucosides in flaxseed. Food Chemistry, 76, 207–212. doi: 10.1016/S0308-8146(01)00269-2.CrossRefGoogle Scholar
  13. Kamal-Eldin, A., Peerlkamp, N., Johnsson, P., Andersson, R., Andersson, R. E., Lundgren, L. N., et al. (2001). An oligomer from flaxseed composed of secoisolariciresinol diglucoside and 3-hydroxy-3-methyl glutaric acid residues. Phytochemistry, 58, 587–590. doi: 10.1016/S0031-9422(01)00279-5.CrossRefGoogle Scholar
  14. Kaufmann, B., & Christen, P. (2002). Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochemical Analysis, 13, 105–113. doi: 10.1002/pca.631.CrossRefGoogle Scholar
  15. Kitts, D. D., Yuan, Y. V., Wijewickreme, A. N., & Thompson, L. U. (1999). Antioxidant activity of the flaxseed lignan secoisolariciresinol diglucoside and its mammalian lignan metabolites enterodiol and enterolactone. Molecular and Cellular Biochemistry, 202, 91–100. doi: 10.1023/A:1007022329660.CrossRefGoogle Scholar
  16. Lidström, P., Tierney, J., Wathey, B., & Westman, J. (2001). Microwave assisted organic synthesis—a review. Tetrahedron, 57, 9225–9283. doi: 10.1016/S0040-4020(01)00906-1.CrossRefGoogle Scholar
  17. Liggins, J., Grimwood, R., & Bingham, S. A. (2000). Extraction and quantification of lignan phytoestrogens in food and human samples. Analytical Biochemistry, 287, 102–109. doi: 10.1006/abio.2000.4811.CrossRefGoogle Scholar
  18. Martino, E., Ramaiola, I., Urbano, M., Bracco, F., & Collina, S. (2006). Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to soxhlet and ultrasound-assisted extraction. Journal of Chromatography A, 1125, 147–151. doi: 10.1016/j.chroma.2006.05.032.CrossRefGoogle Scholar
  19. Mazza, G., & Biliaderis, C. G. (1989). Functional properties of flax seed mucilage. Journal of Food Science, 54, 1302–1305. doi: 10.1111/j.1365-2621.1989.tb05978.x.CrossRefGoogle Scholar
  20. Meda, V., Orsat, V., & Raghavan, G. S. V. (2005). Microwave heating and the dielectric properties of foods. In H. Schubert & M. Regier (Eds.), The microwave processing of foods (pp. 61–75). Cambridge: Woodhead.CrossRefGoogle Scholar
  21. Myers, R. H., & Montgomery, D. C. (Eds.). (2002). Response surface methodology—process and product optimization using designed experiments (pp. 85–196). New York: John Wiley & Sons.Google Scholar
  22. Nemes, S. M. (2007). Microwave-assisted extraction (MAE) of secoisolariciresinol diglucoside (SDG) from flaxseed. M.Sc. Thesis available at Bioresource Engineering Department, McGill University, Ste-Anne de Bellevue, QC, Canada.
  23. Nemes, S. M., & Orsat, V. (2009). Screening the experimental domain for the microwave-assisted extraction of secoisolariciresinol diglucoside from flaxseed prior to optimization procedures. Food and Bioprocess Technology, in press. doi: 10.1007/s11947-009-0212-0.Google Scholar
  24. Oomah, B. D. (2002). Phytoestrogens. In J. W. Hurst (Ed.), Methods of analysis for functional foods and nutraceuticals (pp. 1–63). Boca Raton: CRC.Google Scholar
  25. Orsat, V., Raghavan, G. S. V., & Meda, V. (2005). Microwave technology for food processing: an overview. In H. Schubert & M. Regier (Eds.), The microwave processing of foods (pp. 105–118). Cambridge: Woodhead.CrossRefGoogle Scholar
  26. Prasad, K. (1999). Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Circulation, 99, 1355–1362.Google Scholar
  27. Prasad, K. (2000a). Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. International Journal of Angiology, 9, 220–225. doi: 10.1007/BF01623898.CrossRefGoogle Scholar
  28. Prasad, K. (2000b). Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: Effect of secoisolariciresinol diglucoside (SDG). Molecular and Cellular Biochemistry, 209, 89–96. doi: 10.1023/A:1007079802459.CrossRefGoogle Scholar
  29. Prasad, K. (2004). Antihypertensive activity of secoisolariciresinol diglucoside (SDG) isolated from flaxseed: Role of guanylate cyclase. International Journal of Angiology, 13, 7–14.Google Scholar
  30. Prasad, K., Mantha, S., Muir, A., & Westcott, N. (2000). Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Molecular and Cellular Biochemistry, 206, 141–150. doi: 10.1023/A:1007018030524.CrossRefGoogle Scholar
  31. Raghavan, G. S. V., Orsat, V., & Meda, V. (2005). Microwave processing of foods. Stewart Postharvest Review, 1, 1–8. doi: 10.2212/spc.2005.3.1.CrossRefGoogle Scholar
  32. Sicilia, T., Niemeyer, H. B., Honig, D. M., & Metzler, M. (2003). Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. Journal of Agricultural and Food Chemistry, 51, 1181. doi: 10.1021/jf0207979.CrossRefGoogle Scholar
  33. Thompson, L. U., Boucher, B. A., Zhen, L., Cotterchio, M., & Kreiger, N. (2006). Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutrition and Cancer, 54, 184–201. doi: 10.1207/s15327914nc5402_5.CrossRefGoogle Scholar
  34. Vadivambal, R., & Jayas, D. (2008). Non-uniform Temperature distribution during microwave heating of food materials—a review. Food Bioprocess Technology, in press. doi: 10.1007/s11947-008-0136-0.
  35. Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science and Technology, 17, 300–312. doi: 10.1016/j.tifs.2005.12.004.CrossRefGoogle Scholar
  36. Westcott, N. D., & Muir, A. D. (2003a). Flax seed lignan in disease prevention and health promotion. Phytochemistry Reviews, 2, 401–417. doi: 10.1023/B:PHYT.0000046174.97809.b6.CrossRefGoogle Scholar
  37. Westcott, N. D., & Muir, A. D. (2003b). Chemical studies on the constituents of Linum spp. In N. D. Westcott & A. D. Muir (Eds.), Flax: The genus Linum (pp. 55–73). London: Routledge.Google Scholar
  38. Williams, O. J., Raghavan, G. S. V., Orsat, V., & Dai, J. (2004). Microwave-assisted extraction of capsaicinoids from capsicum fruit. Journal of Food Biochemistry, 28, 113–122. doi: 10.1111/j.1745-4514.2004.tb00059.x.CrossRefGoogle Scholar
  39. Yang, Y., Chen, L., Zhang, X. X., & Guo, Z. (2004). Microwave assisted extraction of major active ingredients in Panax quinquefolium L. Journal of Liquid Chromatography & Related Technologies, 27, 3203–3211. doi: 10.1081/JLC-200034881.CrossRefGoogle Scholar
  40. Zhang, W., & Xu, S. (2007). Microwave-assisted extraction of secoisolariciresinol diglucoside from flaxseed hull. Journal of the Science of Food and Agriculture, 87, 1455–1462. doi: 10.1002/jsfa.2793.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Bioresource Engineering Department, Macdonald-Stewart BuildingMacdonald Campus of McGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations