Food and Bioprocess Technology

, Volume 4, Issue 4, pp 624–630 | Cite as

Clostridium perfringens: A Dynamic Foodborne Pathogen

  • Santos García
  • Norma Heredia


Clostridium perfringens is a spore-forming bacterium and natural inhabitant of soil and the intestinal tracts of many warm-blooded animals, including humans. The ubiquitous nature of this bacterium and its spores makes it a frequent problem for the food industry and establishments where large amounts of food are prepared. C. perfringens causes potentially lethal foodborne diseases in humans, including food poisoning and necrotic enteritis. This bacterium could be controlled properly following safety rules such as adequate heating and cooling of food during processing. Unfortunately, large C. perfringens outbreaks, sometimes with fatal outcomes are still frequently reported. This paper describes the main characteristics of C. perfringens that allow the bacterium to survive and grow in foods, and cause human disease as well as discusses strategies to control this microorganism during food processing.


Food safety Foodborne pathogens Clostridium perfringens Enterotoxin 


  1. Adak, G. K., Long, S. M., & O’Brien, S. J. (2002). Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut, 51, 832–841. doi: 10.1136/gut.51.6.832.CrossRefGoogle Scholar
  2. Aguilera, M. O., Stagnitta, P. V., Micalizzi, B., & de Guzman, A. M. (2005). Prevalence and characterization of Clostridium perfringens from spices in Argentina. Anaerobe, 11, 327–334. doi: 10.1016/j.anaerobe.2005.05.003.CrossRefGoogle Scholar
  3. Ando, Y., Tsuzuki, T., Sunagawa, H., & Oka, S. (1985). Heat resistance, spore germination, and enterotoxigenicity of Clostridium perfringens. Microbiology and Immunology, 29, 317–326. doi: 10.1111/j.1574-6968.1985.tb00883.x.CrossRefGoogle Scholar
  4. Billington, S. J., Wieckowski, E. U., Sarker, M. R., Bueschel, D., Songer, J. G., & McClane, B. A. (1998). Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin sequences. Infection and Immunity, 66, 4531–4536.Google Scholar
  5. Bos, J., Smithee, L., McClane, B., Distefano, R. F., Uzal, F., Songer, J. G., et al. (2005). Fatal Necrotizing colitis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clinical Infectious Diseases, 40, e78–e83. doi: 10.1086/429829.CrossRefGoogle Scholar
  6. Brynestad, S., & Granum, P. E. (2002). Clostridium perfringens foodborne infections. International Journal of Food Microbiology, 74, 195–202. doi: 10.1016/S0168-1605(01)00680-8.CrossRefGoogle Scholar
  7. Brynestad, S., Synstad, B., & Granum, P. E. (1997). The Clostridium perfringens enterotoxin gene is on a transposable element in type A human food poisoning strains. Microbiology, 143, 2109–2115.CrossRefGoogle Scholar
  8. Carman, R. J., Sayeed, S., Li, J., Genheimer, C. W., Hiltonsmith, M. F., Wilkins, T. D., et al. (2008). Clostridium perfringens toxin genotypes in the feces of healthy North Americans. Anaerobe, 14, 102–108.CrossRefGoogle Scholar
  9. de Joung, A. E. I., Rombouts, F. M., & Beumer, R. R. (2004). Behavior of Clostridium perfringens at low temperatures. International Journal of Food Microbiology, 97, 71–80. doi: 10.1016/j.ijfoodmicro.2004.03.030.CrossRefGoogle Scholar
  10. Fujioka, R. S., & Shizumura, L. K. (1985). Clostridium perfringens, a reliable indicator of stream water quality. Journal Water Pollution Control Federation, 57, 986–992.Google Scholar
  11. Fujisawa, T., Aikawa, K., Takahashi, T., Yamai, S., & Ueda, S. (2001). Occurrence of Clostridia in commercially available curry roux. J Food Hyg Soc Jpn., 42, 394–397.CrossRefGoogle Scholar
  12. Garcia, J. S., & Heredia, N. L. (2009) Foodborne Pathogens and Toxins: an overview. In Heredia, Wesley & Garcia (eds) Microbiologically Safe Foods. Wiley-Blackwell, New York, USA (in press).Google Scholar
  13. Granum, P. E., & Richardson, M. (1991). Chymotrypsin treatment increases the activity of Clostridium perfringens enterotoxin. Toxicon, 29, 898–900. doi: 10.1016/0041-0101(91)90227-I.CrossRefGoogle Scholar
  14. Heikinheimo, A. (2008). Diagnostics and molecular epidemiology of cpe-positive Clostridium perfringens type A. PhD Thesis. Department of Food and Environmental Hygiene, University of Helsinki, Finland.Google Scholar
  15. Heredia, N. L., & Labbé, R. G. (2001). Clostridium perfringens. In J. S. García-Alvarado, & R. G. Labbé (Eds.), Guide to Foodborne Pathogens (pp. 133–142). New York, USA: John Wiley & Sons.Google Scholar
  16. Heredia, N. L., García-Alvarado, J. S., & Labbé, R. G. (1998). Alteration in sporulation, enterotoxin production and protein synthesis by Clostridium perfringens type A following heat shock. Journal of Food Protection, 61, 1143–1149.Google Scholar
  17. Heredia, N., Ybarra, P., Hernández, C., & García, S. (2008). Extracellular protectants produced by Clostridium perfringens cells at elevated temperatures. Letters in Applied Microbiology, 48, 133–139. doi: 10.1111/j.1472-765X.2008.02504.x.CrossRefGoogle Scholar
  18. Jones, P. G., & Inouye, M. (1994). The cold-shock response — a hot topic. Molecular Microbiology, 11, 811–818.CrossRefGoogle Scholar
  19. Juneja, V. K., & Thippareddi, H. (2004). Control of Clostridium perfringens in a model roast beef by salts of organic acids during chilling. Journal of Food Safety, 93, 155–163.Google Scholar
  20. Juneja, V. K., Thippareddi, H., & Friedman, M. (2006). Control of Clostridium perfringens in cooked ground beef by carvacrol, cinnamaldehyde, thymol, or oregano oil during chilling. Journal of Food Protection, 69, 1546–1155.Google Scholar
  21. Kokai-Kun, J., Songer, J., Czeczulin, J., Chen, F., & McClane, B. (1994). Comparison of Western immunoblots and gene detection assays for identification of potentially enterotoxigenic isolates of Clostridium perfringens. Journal of Clinical Microbiology, 32, 2533–2539.Google Scholar
  22. Limón, J. C., Heredia, N. L., & García Alvarado, J. S. (2001). Cross protection by heat and cold shock to sublethal temperatures in Clostridium perfringens. Braz J Microbiol., 32, 110–112.Google Scholar
  23. Limón, J., Solis, L., García, S., & Heredia, N. (2007). Influence of GRAS substances on the acquisition of cold tolerance in C. perfringens. In: Proceddings of the Annual Conference of the Vereinigung fur Allgemeine Mikrobiologie (VAAN), 1–4 April 2007, Osnarbruck, Germany.Google Scholar
  24. Lin, Y. T., & Labbé, R. G. (2003). Enterotoxigenicity and genetic relatedness of Clostridium perfringens isolates from retail foods in the United States. Applied and Environmental Microbiology, 69, 1642–1646. doi: 10.1128/AEM.69.3.1642-1646.2003.CrossRefGoogle Scholar
  25. Linch, M., Painter, J., Woodruff, R., & Braden, C. (2006). Surveillance for Foodborne-Disease Outbreaks—United States, 1998–2002. Morbidity and Mortality Weekly Report, 55, 1–34.Google Scholar
  26. McClane, B. A. (1996). An overview of Clostridium perfringens enterotoxin. Toxicon, 34, 1335–1343. doi: 10.1016/S0041-0101(96)00101-8.CrossRefGoogle Scholar
  27. McClane, B. A. (2005). Clostridial enterotoxins. In P. Durre (Ed.), Handbook on Clostridia (pp. 385–406). Florida, USA: Taylor and Francis.CrossRefGoogle Scholar
  28. McClane, B. A. (2007). Clostridium perfringens. In M. Doyle, & L. Beuchat (Eds.), Food Microbiology, fundamentals and frontiers (Third edition) (pp. 423–445). Washington, DC, USA: American Society for microbiology.Google Scholar
  29. McDonel, J. L. (1986). Toxins of Clostridium perfringens types A, B, C, D, and E. In F. Doner, & J. Drews (Eds.), Pharmacology of bacterial toxins (p. 477). Oxford, England: Pergamon.Google Scholar
  30. Miwa, N., Nishina, T., Kubo, S., & Fujikura, K. (1996). Nested polymerase chain reaction for detection of low levels of enterotoxigenic Clostridium perfringens in animal feces and meat. Journal of Veterinary Medical Science, 58, 197–203.Google Scholar
  31. Miwa, N., Nishina, T., Kubo, S., Atsumi, M., & Honda, H. (1998). Amount of enterotoxigenic Clostridium perfringens in meat detected by nested PCR. International Journal of Food Microbiology, 42, 195–200. doi: 10.1016/S0168-1605(98)00082-8.CrossRefGoogle Scholar
  32. Morera, J., Rodriguez, E., & Gamboa, M. M. (1999). Determination of Clostridium perfringens in pork sausages from the Metropolitan area of Costa Rica. Archivos latinoamericanos de nutrición, 49, 279–282.Google Scholar
  33. Phillips, D., Jordan, D., Morris, S., Jenson, I., & Sumner, J. (2008). A national survey of the microbiological quality of retail raw meats in Australia. Journal of Food Protection, 71, 1232–1236.Google Scholar
  34. Rahmati, T., & Labbe, R. G. (2008). Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood. Journal of Food Protection, 71, 1178–1185.Google Scholar
  35. Rodriguez-Romo, L. A., Heredia, N. L., Labbé, R. G., & Garcia-Alvarado, J. S. (1988). Detection of enterotoxigenic Clostridium perfringens in spices used in Mexico by dot blotting using a DNA probe. Journal of Food Protection, 61, 201–204.Google Scholar
  36. Rood, J. (1998). Virulence genes of Clostridium perfringens. Annual Review of Microbiology, 52, 333–360. doi: 10.1146/annurev.micro.52.1.333.CrossRefGoogle Scholar
  37. Sabah, J. R., Thippareddi, H., Marsden, J. L., & Fung, D. Y. (2003). Use of organic acids for the control of Clostridium perfringens in cooked vacuum-packaged restructured roast beef during an alternative cooling procedure. Journal of Food Protection, 66, 1408–1412.Google Scholar
  38. Sabah, J. R., Juneja, V. K., & Fung, D. Y. (2004). Effect of spices and organic acids on the growth of Clostridium perfringens during cooling of cooked ground beef. Journal of Food Protection, 67, 1840–1847.Google Scholar
  39. Songer, J., & Meer, R. (1996). Genotyping of Clostridium perfringens by polymerase chain reaction is a useful adjunct to diagnosis of Clostridial enteric disease in animals. Anaerobe, 2, 197–203. doi: 10.1006/anae.1996.0027.CrossRefGoogle Scholar
  40. USDA-FSIS. (2001). Draft compliance guidelines for ready-to-eat meat and poultry products. Available at: Accessed December, 2008.
  41. Villarreal, L., Heredia, N. L., & García-Alvarado, J. S. (2000). Changes in protein synthesis and acid tolerance of Clostridium perfringens type A as a result of an acid shock. Internatonal Microbiology, 3, 113–116.Google Scholar
  42. Villarreal, L., Heredia, N. L., & García, S. (2002). Cold tolerance and changes in rates of synthesis of individual proteins of Clostridium perfringens as a result of cold pre-treatment. Acta Alimentaria, 31, 179–184. doi: 10.1556/AAlim.31.2002.2.7.CrossRefGoogle Scholar
  43. Virginia, P., Micalizzi, B., & Stefanini de Guzmán, A. M. (2002). Prevalence of enterotoxigenic Clostridium perfringens in meats in San Luis, Argentina. Anaerobe, 8, 253–258. doi: 10.1006/anae.2002.0433.CrossRefGoogle Scholar
  44. Wen, Q. Y., & McClane, B. A. (2004). Detection of enterotoxigenic Clostridium perfringens type A isolates in American retail foods. Applied and Environmental Microbiology, 70, 2685–2691. doi: 10.1128/AEM.70.5.2685-2691.2004.CrossRefGoogle Scholar
  45. Willardsen, R. R., Busta, F. F., Allen, C. E., & Smith, L. B. (1978). Growth and survival of Clostridium perfringens during constantly rising temperatures. Journal Food Science, 43, 470–475. doi: 10.1111/j.1365-2621.1978.tb02333.x.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departamento de Microbiología e Inmunología, Facultad de Ciencias BiológicasUniversidad Autónoma de Nuevo LeónSan NicolásMéxico

Personalised recommendations