Skip to main content

Advertisement

Log in

Clostridium sporogenes-ATCC 7955 Spore Destruction Kinetics in Milk Under High Pressure and Elevated Temperature Treatment Conditions

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Clostridium sporogenes (ATCC 7955) spores inoculated in milk (2% fat) were subjected to high-pressure (HP) treatments (700–900 MPa) and at elevated temperatures (80–100 °C) for selected times up to 32 min. Samples were sealed in 1-mL plastic vials and placed in a specially constructed insulated chamber to prevent temperature drop during the treatment. Both pressure pulse (with no hold time) and pressure hold techniques were employed for treatment. Pressure pulse resulted in a small, but consistent, destruction (up to 0.5 log kill) of spores. During the pressure hold treatment, the destruction followed a first-order model (R2 > 0.90). The kinetic data were compensated for the small variations in temperature during the treatment. As expected, higher pressures and higher temperatures resulted in a faster rate of spore destruction. Temperature-corrected D values ranged from 13.6 to 2.4 min at 700 MPa and 7.0 to 1.3 min at 900 MPa, respectively, with process temperatures set at 90 and 100 °C. In comparison, thermal treatments gave D values ranging from 156 min at 90 °C to 12.1 min at 100 °C. The temperature sensitivity ZP values (16.5 to 20.3 °C) under high pressure (700–900 MPa) were higher than under conventional thermal processing (9.0 °C), indicating the spore’s thermal resistance to increase at HP processing conditions. The pressure sensitivity ZT values varied between 450 and 680 MPa under the elevated temperature (80–100 °C) processing conditions. Overall, C. sporogenes 7955 spores were relatively more sensitive to temperature than pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn, J., & Balasubramaniam, V. M. (2007a). Yousef AE. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. International Journal of Food Microbiology, 113, 321–319. doi:10.1016/j.ijfoodmicro.2006.08.012.

    Article  CAS  Google Scholar 

  • Ahn, J., & Balasubramaniam, V. E. (2007b). Effects of inoculum level and pressure pulse on the inactivation of Clostridium sporogenes spores by pressure-assisted thermal processing. Journal of Microbiology and Biotechnology, 17(4), 616–623.

    Google Scholar 

  • Awuah, G. B., Ramaswamy, H. S., Simpson, B. K., & smith, J. P. (1993). Thermal inactivation kinetics of trypsin at aseptic processing temperatures. Journal of Food Process Engineering, 16, 315–328. doi:10.1111/j.1745-4530.1993.tb00324.x.

    Article  Google Scholar 

  • Crawford, Y. J., Murano, E. A., Olson, D. G., & Shenoy, K. (1996). Use of high hydrostatic pressure and irradiation to eliminate Clostridium sporogenes spores in chicken breast. Journal of Food Protection, 59(7), 711–715.

    Google Scholar 

  • de Heij, W. B. C., van Schepdael, L. J. M. M., Moezelaar, R., Hoogland, H., Matser, A. M., & van den Berg, R. W. (2003). High-pressure sterilization: Maximizing the benefits of adiabatic heating. Food Technologist, 57(3), 37–41.

    Google Scholar 

  • Koutchma, T., Guo, B., Patazca, E., & Parisi, B. (2005). High pressure–high temperature sterilization: From kinetic to analysis to process verification. Journal of Food Process Engineering, 28, 610–629. doi:10.1111/j.1745-4530.2005.00043.x.

    Article  Google Scholar 

  • Krebbers, B., Koets, M., Van den Wall, F., Matser, A. M., Moezelaar, R., & Hoogerwerf, S. W. (2002). Effects of high pressure processing on the quality of green beans. In R. Hayashi (Ed.), Trends in high pressure bioscience and biotechnology (pp. 389–396). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  • Margosh, D., Ehrmann, M. A., Ganzle, M. G., & Vogel, R. F. (2004). Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots. Journal of Food Protection, 67(11), 2530–2537.

    Google Scholar 

  • Margosh, D., Ehrmann, M. A., Buckow, R., Heinz, V., Vogel, R. F., & Ganzle, M. G. (2006). High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Applied and Environmental Microbiology, 2006, 3476–3481. doi:10.1128/AEM.72.5.3476-3481.2006.

    Article  Google Scholar 

  • Matser, A. M., Krebbers, B., van den Berg, R. W., & Bartels, P. V. (2004). Advantages of high pressure sterilization on quality of food products. Trends in Food Science & Technology, 15(2), 79–85. doi:10.1016/j.tifs.2003.08.005.

    Article  CAS  Google Scholar 

  • Meyers, R. (2000). Ultra high pressure, high temperature food preservation process. U.S. Patent 6017572.

  • Mills, G., Earnshaw, R., & Patterson, M. F. (1998). Effects of high hydrostatic pressure on Clostridium botulinum spores. Letters in Applied Microbiology, 26, 227–230. doi:10.1046/j.1472-765X.1998.00329.x.

    Article  CAS  Google Scholar 

  • Norton, T., & Sun, D. W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1, 2–34. doi:10.1007/s11947-007-0007-0.

    Article  Google Scholar 

  • Ocio, M. J., Sfinchez, T., Fernandez, P. S., Rodrigo, M., & Martinez, A. (1994). Thermal resistance characteristics of PA 3679 in the temperature range of 110–121°C as affected by pH, type of acidulant and substrate. International Journal of Food Microbiology, 22(4), 239–247. doi:10.1016/0168-1605(94)90175-9.

    Article  CAS  Google Scholar 

  • Patashnik, M. (1953). A simplified procedure for thermal process evaluation. Food Technologist, 7(1), 1–6.

    Google Scholar 

  • Patazca, E., Ramaswamy, H. S., & Dunn, J. (2004). Come up and hold time corrections for kinetic data on microbial inactivation under high pressure/high temperature sterilization conditions. In: IFT Annual Meeting book of abstracts.

  • Reddy, N. R., Tetzloff, R. C., Solomon, H. M., & Larkin, J. W. (2006). Inactivation of Clostridium botulinum nonproteolytic type B spores by high pressure processing at moderate to elevated high temperature. Innovative Food Science & Emerging Technologies, 7, 169–175. doi:10.1016/j.ifset.2006.03.002.

    Article  CAS  Google Scholar 

  • Reddy, N. R., Solomon, H. M., Tetzloff, R. C., & Rhodehamel, E. J. (2003). Inactivation of Clostridium botulinum type A spores by high pressure processing at elevated temperatures. Journal of Food Protection, 66(8), 1402–1407.

    CAS  Google Scholar 

  • Reddy, N. R., Solomon, H. M., Fingerhut, G. A., Rhodehamel, E. J., Balasubramaniam, V. M., & Palaniappan, S. (1999). Inactivation of Clostridium botulinum type E spores by high pressure processing. Journal of Food Safety, 19, 277–288. doi:10.1111/j.1745-4565.1999.tb00252.x.

    Article  Google Scholar 

  • Rovere, P., Carpi, G., Dall’Aglio, G., Gola, S., Maggi, A., Miglioli, L., & Scaramuzza, N. (1996). High-pressure heat treatments: Evaluation of the sterilizing effect and of thermal damage. Industria Conserve, 71, 473–483.

    Google Scholar 

  • Sale, J. H., Gould, G. W., & Hamilton, W. A. (1970). Inactivation of bacterial spores by hydrostatic pressure. Journal of General Microbiology, 60, 323–334.

    CAS  Google Scholar 

  • Seyderhelm, I., & Knorr, D. (1992). Reduction of Bacillus stearothermophilus spores by combined high pressure and temperature treatments. J Food Ind, 43, 17–20.

    Google Scholar 

  • Shao, Y., & Ramaswamy, H. S. (2006). Destruction kinetics of C. sporogenes ATCC11437 spores in milk by high pressure combined with elevated temperature, IFTPS, Paper competition.

  • Shao, Y., Zhu, S., Ramaswamy, H. S., & Marcotte, M. (2008). Compression heating and temperature control for high pressure destruction of bacterial spores: an experimental method for kinetics evaluation. Food and Bioprocess Technology, in press. doi:10.1007/s11947-008-0057-y.

  • Stumbo, C. R. (1973). Thermobacteriology in food processing. New York: Academic.

    Google Scholar 

  • Tajchakavit, S., & Ramaswamy, H. S. (1997). Thermal vs. microwave inactivation kinetics of pectin methylesterase in orange juice under batch mode heating conditions. Lebensmittel-Wissenschaft unt Technologie, 30, 85–93.

    Article  CAS  Google Scholar 

  • Wilson, M. J., Baker, R. (1997). High temperature/ultra high pressure sterilization of low acid foods. Patent Cooperation Treaty WO 97/21361 and U.S. patent 6086936.

  • Zhu, S., Naim, F., Marcotte, M., Ramaswamy, H. S., & Shao. Y. (2008). High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures. International Journal of Food Microbiology, 126, 86–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the Strategic Grants Program of the Natural Sciences and Engineering Research Council of Canada (NSERC, Ottawa, ON, Canada). The authors would like to thank Dr. Fadia Naim and Dr. Michèle Marcotte of Food Research and Development Centre, Agriculture and Agri-Food Canada (CRDA, St. Hyacinthe, QC, Canada) for providing the strain of C. sporogenes 7955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosahalli S. Ramaswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, Y., Ramaswamy, H.S. Clostridium sporogenes-ATCC 7955 Spore Destruction Kinetics in Milk Under High Pressure and Elevated Temperature Treatment Conditions. Food Bioprocess Technol 4, 458–468 (2011). https://doi.org/10.1007/s11947-008-0165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0165-8

Keywords

Navigation