Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Non-uniform Temperature Distribution During Microwave Heating of Food Materials—A Review


Use of microwaves has increased largely in the domestic household in the last few decades due to the convenience of using microwave ovens. In the industrial sector, microwave processing is used in some of the unit operations, while it is yet to capture a major place in the industrial applications. The major drawback associated with microwave heating is the non-uniform temperature distribution, resulting in hot and cold spots in the heated product. The non-uniform temperature distribution not only affects the quality of the food but also raises the issue of food safety when the microorganisms may not be destroyed in the cold spots. The temperature distribution during microwave heating has been studied in a wide variety of products by several researchers. This paper summarizes their results and the solutions offered by them to lessen the non-uniformity of heating. The current applications of microwave energy in the industrial sector are also highlighted.

This is a preview of subscription content, log in to check access.


  1. Adu, B., & Otten, L. (1996). Microwave heating and mass transfer characteristics of white beans. Journal of Agricultural Engineering Research, 64(1), 71–78. doi:10.1006/jaer.1996.0047.

  2. Ahmed, J., & Ramaswamy, H. S. (2007). Microwave pasteurization and sterilization of foods. In M. S. Rahman (Ed.), Handbook of food preservation (2nd ed., pp. 691–711). Florida, USA: CRC Press.

  3. Aleixo, J. A. G., Swaminathan, B., Jamesen, K. S., & Pratt, D. E. (1985). Destruction of pathogenic bacteria in turkeys roasted in microwave ovens. Journal of Food Science, 50(4), 873–875. doi:10.1111/j.1365-2621.1985.tb12969.x.

  4. Ayappa, K. G., Davis, H. T., Davis, E. A., & Gordon, J. (1991). Analysis of microwave heating of materials with temperature dependent properties. AlChe Journal, 37(3), 313–322.

  5. Ayappa, K. G., Davis, H. T., Davis, E. A., & Gordon, J. (1992). Two dimensional finite element analysis of microwave heating. AlChe Journal, 38(10), 1577–1592.

  6. Barringer, S. A., Davis, E. A., Gordon, J., Ayappa, K. G., & Davis, H. T. (1995). Microwave heating temperature profiles for thin slabs compared to Maxwell and Lambert law predictions. Journal of Food Science, 60(5), 1137–1142. doi:10.1111/j.1365-2621.1995.tb06309.x.

  7. Blaszczak, W., Gralik, J., Klockiewicz-kaminska, E., Fornal, J., & Warchalewski, J. R. (2002). Effect of γ-radiation and microwave heating on endosperm microstructure in relation to some technological properties of wheat grain. Nahrung/Food, 46(2), 122–129.

  8. Boyaci, I. H., Sumnu, G., & Sakiyan, O. (2008). Estimation of dielectric properties of cakes based on porosity, moisture content and formulations using statistical methods and artificial neural networks. Food and Bioprocess Technology, in press.

  9. Boyes, S., Chevis, P., Holden, J., & Perera, C. (1997). Microwave and water blanching of corn kernels: Control of uniformity of heating during microwave heating. Journal of Food Processing and Preservation, 21(6), 461–484. doi:10.1111/j.1745-4549.1997.tb00796.x.

  10. Buffler, C. R. (1992). Microwave cooking and processing (pp. 14–83). New York, USA: Van Nostrand Reinhold.

  11. Burfoot, D., Griffin, W. J., & James, S. J. (1988). Microwave pasteurization of prepared meals. Journal of Food Engineering, 8(3), 145–156. doi:10.1016/0260-8774(88)90050-7.

  12. Campanone, L. A., & Zaritzky, N. E. (2005). Mathematical analysis of microwave heating process. Journal of Food Engineering, 69(3), 359–368. doi:10.1016/j.jfoodeng.2004.08.027.

  13. Carlin, F., Zimmermann, W., & Sundberg, A. (1982). Destruction of Trichina larvae in beef-pork loaves cooked in microwave ovens. Journal of Food Science, 47(4), 1096–1099. doi:10.1111/j.1365-2621.1982.tb07626.x.

  14. Chen, D. D., Singh, R. K., Haghighi, K., & Nelson, P. E. (1993). Finite element analysis of temperature distribution in microwaved cylindrical potato tissue. Journal of Food Engineering, 18(4), 351–368. doi:10.1016/0260-8774(93)90052-L.

  15. Datta, A. K. (1990). Heat and mass transfer in the microwave processing of food. Chemical Engineering Progress, 86(6), 47–53.

  16. Datta, A. K., Geedipalli, S. S. R., & Almeida, M. F. (2005). Microwave combination heating. Food Technologist, 59(1), 36–40.

  17. Datta, A. K., & Ni, H. (2002). Infrared and hot-air assisted microwave heating of foods for control of surface moisture. Journal of Food Engineering, 51(4), 355–364. doi:10.1016/S0260-8774(01)00079-6.

  18. Datta, A. K., Prosetya, H., & Hu, W. (1992). Mathematical modeling of batch heating of liquids in a microwave cavity. Journal of Microwave Power and Electromagnetic Energy, 27(1), 101–110.

  19. Decareau, R. V. (1985). Microwaves in the food processing Industry. Natick, MA: Academic.

  20. Decareau, R. V. (1992). Microwave foods: New product development. Connecticut, USA: Food and Nutrition Press.

  21. Fakhouri, M. O., & Ramaswamy, H. S. (1993). Temperature uniformity of microwave heated foods as influenced by product type and composition. Food Research International, 26(2), 89–95. doi:10.1016/0963-9969(93)90062-N.

  22. Fu, Y. C. (2004). Fundamentals and Industrial applications of microwave and radio frequency in food processing. In J. S. Smith, & Y. H. Hui (Eds.), Food processing: Principles and applications (pp. 79–100). Iowa, USA: Blackwell.

  23. Funawatashi, Y., & Suzuki, T. (2003). Numerical analysis of microwave heating of a dielectric. Heat Transfer-Asian Research, 32(3), 227–236. doi:10.1002/htj.10087.

  24. Funebo, T., & Ohlsson, T. (1998). Microwave assisted air dehydration of apple and mushroom. Journal of Food Engineering, 38(3), 353–367. doi:10.1016/S0260-8774(98)00131-9.

  25. Fung, D. Y. C., & Cunningham, F. E. (1980). Effect of microwaves on microorganisms in foods. Journal of Food Protection, 43(8), 641–650.

  26. Gehlar, M., & Regmi, A. (2005). New directions in global food Markets: Factors shaping global food markets. Economics Research Service, USDA. Retrieves 2 April 2006 from http://www.ers.usda.gov/publications/aib794/aib794.pdf.

  27. Goksoy, E. O., James, C., & James, S. J. (1999). Non-uniformity of surface temperatures after microwave heating of poultry meat. Journal of Microwave Power and Electromagnetic Energy, 34(3), 149–160.

  28. Gowen, A., Abu-Ghannam, N., Frias, J., & Oliveira, J. (2006). Optimisation of dehydration and rehydration properties of cooked chickpeas (Cicer arietinum L.) undergoing microwave-hot air combination drying. Trends in Food Science & Technology, 17(4), 177–183. doi:10.1016/j.tifs.2005.11.013.

  29. Gunasekaran, S. (1990). Grain drying using continuous and pulsed microwave energy. Drying Technology, 8(5), 1039–1047. doi:10.1080/07373939008959934.

  30. Gunasekaran, S., & Yang, H. (2007). Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. Journal of Food Engineering, 78(4), 1452–1456. doi:10.1016/j.jfoodeng.2006.01.017.

  31. Geedipalli, S. S. R., Rakesh, V., & Datta, A. K. (2007). Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering, 82(3), 359–368. doi:10.1016/j.jfoodeng.2007.02.050.

  32. Ho, Y. C., & Yam, K. L. (1992). Effect of metal shielding on microwave heating uniformity of a cylindrical food model. Journal of Food Processing and Preservation, 16(5), 337–359. doi:10.1111/j.1745-4549.1992.tb00214.x.

  33. James, C., Swain, M. V., James, S. J., & Swain, M. J. (2002). Development of methodology for assessing the heating performance of domestic microwave ovens. International Journal of Food Science & Technology, 37(8), 879–892. doi:10.1046/j.1365-2621.2002.00636.x.

  34. Jeong, J. Y., Lee, E. S., Choi, J. H., Lee, J. Y., Kim, J. M., Min, S. G., et al. (2007). Variability in temperature distribution and cooking properties of ground pork patties containing different fat level and with/without salt cooked by microwave energy. Meat Science, 75(3), 415–422. doi:10.1016/j.meatsci.2006.08.010.

  35. Kelen, A., Ress, S., Nagy, T., Pallai, E., & Pintye-Hodi, K. (2006). Mapping of temperature distribution in pharmaceutical microwave vacuum drying. Powder Technology, 162(2), 133–137. doi:10.1016/j.powtec.2005.12.001.

  36. Krokida, M. K., Maroulis, Z. B., & Saravacos, G. D. (2001). The effect of the method of drying on the color of dehydrated products. International Journal of Food Science & Technology, 36(1), 53–59. doi:10.1046/j.1365-2621.2001.00426.x.

  37. Lee, M. L., Gray, I., & Pearson, A. M. (1983). Effects of frying procedures and compositional factors on the temperature profile of bacon. Journal of Food Science, 48(3), 817–819. doi:10.1111/j.1365-2621.1983.tb14907.x.

  38. Lee, D. S., Shin, D., & Yam, K. L. (2002). Improvement of temperature uniformity in microwave-reheated rice by optimizing heat/cold cycle. Food Service Technology, 2(2), 87–93. doi:10.1046/j.1471-5740.2002.00035.x.

  39. Lin, Y. E., Anantheswaran, R. C., & Puri, V. M. (1995). Finite element analysis of microwave heating of solid foods. Journal of Food Engineering, 25(1), 85–112. doi:10.1016/0260-8774(94)00008-W.

  40. Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International, 31(2), 111–117. doi:10.1016/S0963-9969(98)00070-2.

  41. Mallikarjunan, P., Hung, Y. C., & Gundavarapu, S. (1996). Modeling microwave cooking of cocktail shrimp. Journal of Food Process Engineering, 19(1), 97–111. doi:10.1111/j.1745-4530.1996.tb00383.x.

  42. Manickavasagan, A., Jayas, D. S., & White, N. D. G. (2006). Non-uniformity of surface temperatures of grain after microwave treatment in an industrial microwave dryer. Drying Technology, 24(12), 1559–1567. doi:10.1080/07373930601030796.

  43. Manickavasagan, A., Jayas, D. S., White, N. D. G., & Paliwal, J. (2008). Wheat class identification using thermal imaging. Food and Bioprocess Technology, in press.

  44. Mullin, J. (1995). Microwave processing. In G. W. Gould (Ed.), New methods of food preservation (pp. 112–134). Bishopbriggs, UK: Blackie Academic and Professional.

  45. Mullin, J., & Bows, J. (1993). Temperature measurements during microwave cooking. Food Additives and Contaminants, 10(6), 663–672.

  46. Ni, H., & Datta, A. K. (1999). Moisture loss as related to heating uniformity in microwave processing of solid foods. Journal of Food Process Engineering, 22(5), 367–382. doi:10.1111/j.1745-4530.1999.tb00492.x.

  47. Ohlsson, T., & Thorsell, U. (1984). Problems in microwave reheating of chilled foods. Journal of Foodservice Systems, 3, 9–16.

  48. Oliveira, M. E. C., & Franca, A. S. (2002). Microwave heating of foodstuffs. Journal of Food Engineering, 53(4), 347–359. doi:10.1016/S0260-8774(01)00176-5.

  49. Raaholt, B. W., & Ohlsson, T. (2000). Tools for improving the heating uniformity of foods heated in a microwave oven. Microwave World, 21(1), 24–28.

  50. Ramaswamy, H. S., Pillet, T., & Fakhouri, M. (1991). Distribution and equalization of temperature in a microwave heated food model. ASAE Paper No. 913518. St. Joseph, MI.

  51. Ramaswamy, H. S., & Pillet-Will, T. (1992). Temperature distribution in microwave heated food models. Journal of Food Quality, 15(6), 435–448. doi:10.1111/j.1745-4557.1992.tb00969.x.

  52. Rattanadecho, P. (2004). Theoretical and experimental investigation of microwave thawing of frozen layer using a microwave oven (effects of layered configurations and layer thickness). International Journal of Heat and Mass Transfer, 47(5), 937–945. doi:10.1016/j.ijheatmasstransfer.2003.08.019.

  53. Romano, V. R., Marra, F., & Tammaro, U. (2005). Modelling of microwave heating of foodstuff: Study on the influence of sample dimensions with a FEM approach. Journal of Food Engineering, 71(3), 233–241. doi:10.1016/j.jfoodeng.2004.11.036.

  54. Rosenberg, U., & Bogl, W. (1987). Microwave pasteurization, sterilization, blanching, and pest control in the food industry. Food Technologist, 41(6), 92–97.

  55. Ryynanen, S., & Ohlsson, T. (1996). Microwave heating uniformity of ready meals as affected by placement, composition, and geometry. Journal of Food Sciences, 61(3), 620–624. doi:10.1111/j.1365-2621.1996.tb13171.x.

  56. Ryynanen, S., Tuorila, H., & Hyvonen, L. (2001). Perceived temperature effects on microwave heated meals and meal components. Food Service Technology, 1(3), 141–148. doi:10.1046/j.1471-5740.2001.d01-4.x.

  57. Sakai, N., & Wang, C. (2004). An analysis of temperature distribution in microwave heating of foods with non-uniform dielectric properties. Journal of Chemical Engineering of Japan, 37(7), 858–862. doi:10.1252/jcej.37.858.

  58. Schiffmann, R. F. (2001). Microwave processes for the food industry. In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 229–335). New York, USA: Marcel Dekker.

  59. Tewari, G. (2007). Microwave and radio-frequency heating. In G. Tewari & V. K. Juneja (Eds.), Advances in thermal and non-thermal food preservation (pp. 91–98 & 131–143). Iowa, USA: Blackwell.

  60. Vilayannur, R. S., Puri, V. M., & Anantheswaran, R. C. (1998). Size and shape effect on non-uniformity of temperature and moisture distributions in microwave heated food materials: Part 1 Simulation. Journal of Food Process Engineering, 21(3), 209–233. doi:10.1111/j.1745-4530.1998.tb00448.x.

  61. Warchalewski, J. R., Gralik, J., Wojtasiak, R. Z., Zabielski, J., & Kusnnierz, R. (1998). The evaluation of wheat grain odour and colour after gamma and microwave irradiation. Electronic Journal of Polish Agricultural Universities, 1(1), 1–11.

  62. Yang, H. W., & Gunasekaran, S. (2004). Comparison of temperature distribution in model food cylinders based on Maxwell’s equations and Lambert’s law during pulsed microwave heating. Journal of Food Engineering, 64(4), 445–453. doi:10.1016/j.jfoodeng.2003.08.016.

  63. Zhang, H., Bonneveau, L. H., Yout, W., Helstern, G. C., & Loizeau, G. (2004). Uniform microwave heating of food in a container. US Patent 6,777,655.

  64. Zhao, Y., Flugstad, B., Kolbe, E., Park, J. W., & Wells, J. H. (2000). Using capacitive (radio frequency) dielectric heating in food processing and preservation- a review. Journal of Food Process Engineering, 23(1), 25–55. doi:10.1111/j.1745-4530.2000.tb00502.x.

  65. Zhou, L., Puri, V. M., & Anantheswaran, R. C. (1995). Finite element modeling of heat and mass transfer in food materials during microwave heating- Model development and validation. Journal of Food Engineering, 25(4), 509–529. doi:10.1016/0260-8774(94)00032–5.

Download references


We thank the Canada Research Chairs program and the Natural Sciences and Engineering Research Council of Canada for providing financial support for this study.

Author information

Correspondence to D. S. Jayas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vadivambal, R., Jayas, D.S. Non-uniform Temperature Distribution During Microwave Heating of Food Materials—A Review. Food Bioprocess Technol 3, 161–171 (2010). https://doi.org/10.1007/s11947-008-0136-0

Download citation


  • Microwave
  • Heating
  • Temperature
  • Non-uniform
  • Quality