Food and Bioprocess Technology

, Volume 3, Issue 2, pp 161–171 | Cite as

Non-uniform Temperature Distribution During Microwave Heating of Food Materials—A Review

  • R. Vadivambal
  • D. S. JayasEmail author
Review Paper


Use of microwaves has increased largely in the domestic household in the last few decades due to the convenience of using microwave ovens. In the industrial sector, microwave processing is used in some of the unit operations, while it is yet to capture a major place in the industrial applications. The major drawback associated with microwave heating is the non-uniform temperature distribution, resulting in hot and cold spots in the heated product. The non-uniform temperature distribution not only affects the quality of the food but also raises the issue of food safety when the microorganisms may not be destroyed in the cold spots. The temperature distribution during microwave heating has been studied in a wide variety of products by several researchers. This paper summarizes their results and the solutions offered by them to lessen the non-uniformity of heating. The current applications of microwave energy in the industrial sector are also highlighted.


Microwave Heating Temperature Non-uniform Quality 



We thank the Canada Research Chairs program and the Natural Sciences and Engineering Research Council of Canada for providing financial support for this study.


  1. Adu, B., & Otten, L. (1996). Microwave heating and mass transfer characteristics of white beans. Journal of Agricultural Engineering Research, 64(1), 71–78. doi: 10.1006/jaer.1996.0047.CrossRefGoogle Scholar
  2. Ahmed, J., & Ramaswamy, H. S. (2007). Microwave pasteurization and sterilization of foods. In M. S. Rahman (Ed.), Handbook of food preservation (2nd ed., pp. 691–711). Florida, USA: CRC Press.Google Scholar
  3. Aleixo, J. A. G., Swaminathan, B., Jamesen, K. S., & Pratt, D. E. (1985). Destruction of pathogenic bacteria in turkeys roasted in microwave ovens. Journal of Food Science, 50(4), 873–875. doi: 10.1111/j.1365-2621.1985.tb12969.x.CrossRefGoogle Scholar
  4. Ayappa, K. G., Davis, H. T., Davis, E. A., & Gordon, J. (1991). Analysis of microwave heating of materials with temperature dependent properties. AlChe Journal, 37(3), 313–322.Google Scholar
  5. Ayappa, K. G., Davis, H. T., Davis, E. A., & Gordon, J. (1992). Two dimensional finite element analysis of microwave heating. AlChe Journal, 38(10), 1577–1592.Google Scholar
  6. Barringer, S. A., Davis, E. A., Gordon, J., Ayappa, K. G., & Davis, H. T. (1995). Microwave heating temperature profiles for thin slabs compared to Maxwell and Lambert law predictions. Journal of Food Science, 60(5), 1137–1142. doi: 10.1111/j.1365-2621.1995.tb06309.x.CrossRefGoogle Scholar
  7. Blaszczak, W., Gralik, J., Klockiewicz-kaminska, E., Fornal, J., & Warchalewski, J. R. (2002). Effect of γ-radiation and microwave heating on endosperm microstructure in relation to some technological properties of wheat grain. Nahrung/Food, 46(2), 122–129.CrossRefGoogle Scholar
  8. Boyaci, I. H., Sumnu, G., & Sakiyan, O. (2008). Estimation of dielectric properties of cakes based on porosity, moisture content and formulations using statistical methods and artificial neural networks. Food and Bioprocess Technology, in press.Google Scholar
  9. Boyes, S., Chevis, P., Holden, J., & Perera, C. (1997). Microwave and water blanching of corn kernels: Control of uniformity of heating during microwave heating. Journal of Food Processing and Preservation, 21(6), 461–484. doi: 10.1111/j.1745-4549.1997.tb00796.x.CrossRefGoogle Scholar
  10. Buffler, C. R. (1992). Microwave cooking and processing (pp. 14–83). New York, USA: Van Nostrand Reinhold.Google Scholar
  11. Burfoot, D., Griffin, W. J., & James, S. J. (1988). Microwave pasteurization of prepared meals. Journal of Food Engineering, 8(3), 145–156. doi: 10.1016/0260-8774(88)90050-7.CrossRefGoogle Scholar
  12. Campanone, L. A., & Zaritzky, N. E. (2005). Mathematical analysis of microwave heating process. Journal of Food Engineering, 69(3), 359–368. doi: 10.1016/j.jfoodeng.2004.08.027.CrossRefGoogle Scholar
  13. Carlin, F., Zimmermann, W., & Sundberg, A. (1982). Destruction of Trichina larvae in beef-pork loaves cooked in microwave ovens. Journal of Food Science, 47(4), 1096–1099. doi: 10.1111/j.1365-2621.1982.tb07626.x.CrossRefGoogle Scholar
  14. Chen, D. D., Singh, R. K., Haghighi, K., & Nelson, P. E. (1993). Finite element analysis of temperature distribution in microwaved cylindrical potato tissue. Journal of Food Engineering, 18(4), 351–368. doi: 10.1016/0260-8774(93)90052-L.CrossRefGoogle Scholar
  15. Datta, A. K. (1990). Heat and mass transfer in the microwave processing of food. Chemical Engineering Progress, 86(6), 47–53.Google Scholar
  16. Datta, A. K., Geedipalli, S. S. R., & Almeida, M. F. (2005). Microwave combination heating. Food Technologist, 59(1), 36–40.Google Scholar
  17. Datta, A. K., & Ni, H. (2002). Infrared and hot-air assisted microwave heating of foods for control of surface moisture. Journal of Food Engineering, 51(4), 355–364. doi: 10.1016/S0260-8774(01)00079-6.CrossRefGoogle Scholar
  18. Datta, A. K., Prosetya, H., & Hu, W. (1992). Mathematical modeling of batch heating of liquids in a microwave cavity. Journal of Microwave Power and Electromagnetic Energy, 27(1), 101–110.Google Scholar
  19. Decareau, R. V. (1985). Microwaves in the food processing Industry. Natick, MA: Academic.Google Scholar
  20. Decareau, R. V. (1992). Microwave foods: New product development. Connecticut, USA: Food and Nutrition Press.Google Scholar
  21. Fakhouri, M. O., & Ramaswamy, H. S. (1993). Temperature uniformity of microwave heated foods as influenced by product type and composition. Food Research International, 26(2), 89–95. doi: 10.1016/0963-9969(93)90062-N.CrossRefGoogle Scholar
  22. Fu, Y. C. (2004). Fundamentals and Industrial applications of microwave and radio frequency in food processing. In J. S. Smith, & Y. H. Hui (Eds.), Food processing: Principles and applications (pp. 79–100). Iowa, USA: Blackwell.Google Scholar
  23. Funawatashi, Y., & Suzuki, T. (2003). Numerical analysis of microwave heating of a dielectric. Heat Transfer-Asian Research, 32(3), 227–236. doi: 10.1002/htj.10087.CrossRefGoogle Scholar
  24. Funebo, T., & Ohlsson, T. (1998). Microwave assisted air dehydration of apple and mushroom. Journal of Food Engineering, 38(3), 353–367. doi: 10.1016/S0260-8774(98)00131-9.CrossRefGoogle Scholar
  25. Fung, D. Y. C., & Cunningham, F. E. (1980). Effect of microwaves on microorganisms in foods. Journal of Food Protection, 43(8), 641–650.Google Scholar
  26. Gehlar, M., & Regmi, A. (2005). New directions in global food Markets: Factors shaping global food markets. Economics Research Service, USDA. Retrieves 2 April 2006 from
  27. Goksoy, E. O., James, C., & James, S. J. (1999). Non-uniformity of surface temperatures after microwave heating of poultry meat. Journal of Microwave Power and Electromagnetic Energy, 34(3), 149–160.Google Scholar
  28. Gowen, A., Abu-Ghannam, N., Frias, J., & Oliveira, J. (2006). Optimisation of dehydration and rehydration properties of cooked chickpeas (Cicer arietinum L.) undergoing microwave-hot air combination drying. Trends in Food Science & Technology, 17(4), 177–183. doi: 10.1016/j.tifs.2005.11.013.CrossRefGoogle Scholar
  29. Gunasekaran, S. (1990). Grain drying using continuous and pulsed microwave energy. Drying Technology, 8(5), 1039–1047. doi: 10.1080/07373939008959934.CrossRefGoogle Scholar
  30. Gunasekaran, S., & Yang, H. (2007). Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. Journal of Food Engineering, 78(4), 1452–1456. doi: 10.1016/j.jfoodeng.2006.01.017.CrossRefGoogle Scholar
  31. Geedipalli, S. S. R., Rakesh, V., & Datta, A. K. (2007). Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering, 82(3), 359–368. doi: 10.1016/j.jfoodeng.2007.02.050.CrossRefGoogle Scholar
  32. Ho, Y. C., & Yam, K. L. (1992). Effect of metal shielding on microwave heating uniformity of a cylindrical food model. Journal of Food Processing and Preservation, 16(5), 337–359. doi: 10.1111/j.1745-4549.1992.tb00214.x.CrossRefGoogle Scholar
  33. James, C., Swain, M. V., James, S. J., & Swain, M. J. (2002). Development of methodology for assessing the heating performance of domestic microwave ovens. International Journal of Food Science & Technology, 37(8), 879–892. doi: 10.1046/j.1365-2621.2002.00636.x.CrossRefGoogle Scholar
  34. Jeong, J. Y., Lee, E. S., Choi, J. H., Lee, J. Y., Kim, J. M., Min, S. G., et al. (2007). Variability in temperature distribution and cooking properties of ground pork patties containing different fat level and with/without salt cooked by microwave energy. Meat Science, 75(3), 415–422. doi: 10.1016/j.meatsci.2006.08.010.CrossRefGoogle Scholar
  35. Kelen, A., Ress, S., Nagy, T., Pallai, E., & Pintye-Hodi, K. (2006). Mapping of temperature distribution in pharmaceutical microwave vacuum drying. Powder Technology, 162(2), 133–137. doi: 10.1016/j.powtec.2005.12.001.CrossRefGoogle Scholar
  36. Krokida, M. K., Maroulis, Z. B., & Saravacos, G. D. (2001). The effect of the method of drying on the color of dehydrated products. International Journal of Food Science & Technology, 36(1), 53–59. doi: 10.1046/j.1365-2621.2001.00426.x.CrossRefGoogle Scholar
  37. Lee, M. L., Gray, I., & Pearson, A. M. (1983). Effects of frying procedures and compositional factors on the temperature profile of bacon. Journal of Food Science, 48(3), 817–819. doi: 10.1111/j.1365-2621.1983.tb14907.x.CrossRefGoogle Scholar
  38. Lee, D. S., Shin, D., & Yam, K. L. (2002). Improvement of temperature uniformity in microwave-reheated rice by optimizing heat/cold cycle. Food Service Technology, 2(2), 87–93. doi: 10.1046/j.1471-5740.2002.00035.x.CrossRefGoogle Scholar
  39. Lin, Y. E., Anantheswaran, R. C., & Puri, V. M. (1995). Finite element analysis of microwave heating of solid foods. Journal of Food Engineering, 25(1), 85–112. doi: 10.1016/0260-8774(94)00008-W.CrossRefGoogle Scholar
  40. Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International, 31(2), 111–117. doi: 10.1016/S0963-9969(98)00070-2.CrossRefGoogle Scholar
  41. Mallikarjunan, P., Hung, Y. C., & Gundavarapu, S. (1996). Modeling microwave cooking of cocktail shrimp. Journal of Food Process Engineering, 19(1), 97–111. doi: 10.1111/j.1745-4530.1996.tb00383.x.CrossRefGoogle Scholar
  42. Manickavasagan, A., Jayas, D. S., & White, N. D. G. (2006). Non-uniformity of surface temperatures of grain after microwave treatment in an industrial microwave dryer. Drying Technology, 24(12), 1559–1567. doi: 10.1080/07373930601030796.CrossRefGoogle Scholar
  43. Manickavasagan, A., Jayas, D. S., White, N. D. G., & Paliwal, J. (2008). Wheat class identification using thermal imaging. Food and Bioprocess Technology, in press.Google Scholar
  44. Mullin, J. (1995). Microwave processing. In G. W. Gould (Ed.), New methods of food preservation (pp. 112–134). Bishopbriggs, UK: Blackie Academic and Professional.Google Scholar
  45. Mullin, J., & Bows, J. (1993). Temperature measurements during microwave cooking. Food Additives and Contaminants, 10(6), 663–672.Google Scholar
  46. Ni, H., & Datta, A. K. (1999). Moisture loss as related to heating uniformity in microwave processing of solid foods. Journal of Food Process Engineering, 22(5), 367–382. doi: 10.1111/j.1745-4530.1999.tb00492.x.CrossRefGoogle Scholar
  47. Ohlsson, T., & Thorsell, U. (1984). Problems in microwave reheating of chilled foods. Journal of Foodservice Systems, 3, 9–16.Google Scholar
  48. Oliveira, M. E. C., & Franca, A. S. (2002). Microwave heating of foodstuffs. Journal of Food Engineering, 53(4), 347–359. doi: 10.1016/S0260-8774(01)00176-5.CrossRefGoogle Scholar
  49. Raaholt, B. W., & Ohlsson, T. (2000). Tools for improving the heating uniformity of foods heated in a microwave oven. Microwave World, 21(1), 24–28.Google Scholar
  50. Ramaswamy, H. S., Pillet, T., & Fakhouri, M. (1991). Distribution and equalization of temperature in a microwave heated food model. ASAE Paper No. 913518. St. Joseph, MI.Google Scholar
  51. Ramaswamy, H. S., & Pillet-Will, T. (1992). Temperature distribution in microwave heated food models. Journal of Food Quality, 15(6), 435–448. doi: 10.1111/j.1745-4557.1992.tb00969.x.CrossRefGoogle Scholar
  52. Rattanadecho, P. (2004). Theoretical and experimental investigation of microwave thawing of frozen layer using a microwave oven (effects of layered configurations and layer thickness). International Journal of Heat and Mass Transfer, 47(5), 937–945. doi: 10.1016/j.ijheatmasstransfer.2003.08.019.CrossRefGoogle Scholar
  53. Romano, V. R., Marra, F., & Tammaro, U. (2005). Modelling of microwave heating of foodstuff: Study on the influence of sample dimensions with a FEM approach. Journal of Food Engineering, 71(3), 233–241. doi: 10.1016/j.jfoodeng.2004.11.036.CrossRefGoogle Scholar
  54. Rosenberg, U., & Bogl, W. (1987). Microwave pasteurization, sterilization, blanching, and pest control in the food industry. Food Technologist, 41(6), 92–97.Google Scholar
  55. Ryynanen, S., & Ohlsson, T. (1996). Microwave heating uniformity of ready meals as affected by placement, composition, and geometry. Journal of Food Sciences, 61(3), 620–624. doi: 10.1111/j.1365-2621.1996.tb13171.x.CrossRefGoogle Scholar
  56. Ryynanen, S., Tuorila, H., & Hyvonen, L. (2001). Perceived temperature effects on microwave heated meals and meal components. Food Service Technology, 1(3), 141–148. doi: 10.1046/j.1471-5740.2001.d01-4.x.CrossRefGoogle Scholar
  57. Sakai, N., & Wang, C. (2004). An analysis of temperature distribution in microwave heating of foods with non-uniform dielectric properties. Journal of Chemical Engineering of Japan, 37(7), 858–862. doi: 10.1252/jcej.37.858.CrossRefGoogle Scholar
  58. Schiffmann, R. F. (2001). Microwave processes for the food industry. In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 229–335). New York, USA: Marcel Dekker.Google Scholar
  59. Tewari, G. (2007). Microwave and radio-frequency heating. In G. Tewari & V. K. Juneja (Eds.), Advances in thermal and non-thermal food preservation (pp. 91–98 & 131–143). Iowa, USA: Blackwell.CrossRefGoogle Scholar
  60. Vilayannur, R. S., Puri, V. M., & Anantheswaran, R. C. (1998). Size and shape effect on non-uniformity of temperature and moisture distributions in microwave heated food materials: Part 1 Simulation. Journal of Food Process Engineering, 21(3), 209–233. doi: 10.1111/j.1745-4530.1998.tb00448.x.CrossRefGoogle Scholar
  61. Warchalewski, J. R., Gralik, J., Wojtasiak, R. Z., Zabielski, J., & Kusnnierz, R. (1998). The evaluation of wheat grain odour and colour after gamma and microwave irradiation. Electronic Journal of Polish Agricultural Universities, 1(1), 1–11.Google Scholar
  62. Yang, H. W., & Gunasekaran, S. (2004). Comparison of temperature distribution in model food cylinders based on Maxwell’s equations and Lambert’s law during pulsed microwave heating. Journal of Food Engineering, 64(4), 445–453. doi: 10.1016/j.jfoodeng.2003.08.016.CrossRefGoogle Scholar
  63. Zhang, H., Bonneveau, L. H., Yout, W., Helstern, G. C., & Loizeau, G. (2004). Uniform microwave heating of food in a container. US Patent 6,777,655.Google Scholar
  64. Zhao, Y., Flugstad, B., Kolbe, E., Park, J. W., & Wells, J. H. (2000). Using capacitive (radio frequency) dielectric heating in food processing and preservation- a review. Journal of Food Process Engineering, 23(1), 25–55. doi: 10.1111/j.1745-4530.2000.tb00502.x.CrossRefGoogle Scholar
  65. Zhou, L., Puri, V. M., & Anantheswaran, R. C. (1995). Finite element modeling of heat and mass transfer in food materials during microwave heating- Model development and validation. Journal of Food Engineering, 25(4), 509–529. doi: 10.1016/0260-8774(94)00032–5.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Biosystems EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations