Skip to main content

Production and Characterization of an Antifungal Compound (3-Phenyllactic Acid) Produced by Lactobacillus plantarum Strain

Abstract

The Lactobacillus plantarum strain was isolated from grass silage that produces a broad spectrum of antifungal compound, active against food and feed-borne filamentous fungi in agar plate assay. Aspergillus fumigatus and Rhizopus stolonifer were the most sensitive among molds. No inhibitory activity could be detected against mold Penicillium roqueforti. Enhanced antifungal activity was observed at 30 °C in pH 6.5. Minimum inhibitory concentration values against fungal cultures were ranged from 6.5 to 12.0 mg/ml for commercial 3-phenyllactic acid. The production of antifungal compound phenyllactic acid (PLA), lactic acid, and acetic acid by L. plantarum strain was also investigated. Structure characterization of the antifungal compound was carried out by nuclear magnetic resonance spectroscopy, infrared spectroscopy, and gas chromatography. The produced compound (PLA) acted as a fungistatic and delayed the growth of a variety of fungal contaminants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Broberg, A., Jacobsson, K., Strom, K., & Schnurer, J. (2007). Metabolite profile of lactic acid bacteria in grass silage. Applied and Environmental Microbiology, 73(17), 5547–5552. doi:10.1128/AEM.02939-06.

    Article  CAS  Google Scholar 

  2. Calo-Mata, P., Arlindo, S., Boehme, K., de Miguel, T., Pascoal, A., & Barros-Velazquez, J. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food Bioprocess Technology, 1, 43–63. doi:10.1007/s11947-007-0021-2.

    Article  Google Scholar 

  3. Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: Role of microorganisms in food production and preservation. International Journal of Food Microbiology, 50, 131–149. doi:10.1016/S0168-1605(99)00082-3.

    Article  CAS  Google Scholar 

  4. Corcoran, B. M., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2004). Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. Journal of Applied Microbiology, 96(5), 1024–1039. doi:10.1111/j.1365-2672.2004.02219.x.

    Article  CAS  Google Scholar 

  5. Corsetti, A., Gobebetti, M., Rossi, J., & Damiani, P. (1998). Antimold activity of sourdough lactic acid bacteria: Identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CBI. Applied Microbiology and Biotechnology, 50, 253–256. doi:10.1007/s002530051285.

    Article  CAS  Google Scholar 

  6. Daeschel, M. A. (1989). Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technologist, 43, 164–167.

    CAS  Google Scholar 

  7. De Vuyst, L., & Vandamme, E. J. (1994). Bacteriocins of lactic acid bacteria. London, England: Blackie Academie & Professional.

    Google Scholar 

  8. Dieuleveux, V., Lemarinier, S., & Gueguan, M. (1998). Antimicrobial spectrum and target site of D-3-phenyl lactic acid. International Journal of Food Microbiology, 40, 177–183. doi:10.1016/S0168-1605(98)00031-2.

    Article  CAS  Google Scholar 

  9. Gardiner, G. E., O’Sullivan, E., Kelly, J., Auty, M. A., Fitzgerald, G. F., Collins, J. K., et al. (2000). Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Applied and Environmental Microbiology, 66(6), 2605–2612. doi:10.1128/AEM.66.6.2605-2612.2000.

    Article  CAS  Google Scholar 

  10. Gibbs, P. A. (1987). Novel uses of lactic acid fermentation in food preservation. Journal of Applied Bacteriology, Symposium Supplement, pp. 51S–58S.

  11. Gourama, H. (1997). Inhibition of growth and mycotoxin production of Penicillium by Lactobacillus species. Lebensmittel-Wissenschaft Technologie, 30, 279–283. doi:10.1006/fstl.1996.0183.

    Article  CAS  Google Scholar 

  12. Heil, M., Prodebrad, F., Beck, T., Mogandl, A., Sewell, A. C., & Bohles, H. (1998). Enantio selective multidimensional gas chromatography spectrometry in the analysis of urinary organic acid. Journal of Chromatography, 714B, 119–126.

    Google Scholar 

  13. Klaenhammer, T. R. (1988). Bacteriocins of lactic acid bacteria. Biochimie, 70, 337–349. doi:10.1016/0300-9084(88)90206-4.

    Article  CAS  Google Scholar 

  14. Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., & Gobebetti, M. (2000). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology, 66, 4084–4090. doi:10.1128/AEM.66.9.4084-4090.2000.

    Article  CAS  Google Scholar 

  15. Legan, J. D. (1993). Mold spoilage of bread: the problem and some solutions. International Journal of Biodeterioration Biodegradation, 32, 33–53. doi:10.1016/0964-8305(93)90038-4.

    Article  Google Scholar 

  16. Lindgren, S. E., & Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews, 87, 149–164. doi:10.1111/j.1574-6968.1990.tb04885.x.

    Article  CAS  Google Scholar 

  17. Magnusson, J., & Schnurer, J. (2001). Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology, 67, 1–5. doi:10.1128/AEM.67.1.1-5.2001.

    Article  CAS  Google Scholar 

  18. Niku-Paavola, M. L., Laitila, A., Mattila Sandholm, T., & Haikara, A. (1999). New types of antimicrobiol compounds produced by Lactobacillus plantarum. Journal of Applied Microbiology, 86, 29–35. doi:10.1046/j.1365-2672.1999.00632.x.

    Article  CAS  Google Scholar 

  19. Okkers, D. J., Dicks, L. M. T., Silvester, M., Joubert, J. J., & Odendaal, H. J. (1999). Characterization of pentocin TV35b, a bacteriocin like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. Journal of Applied Microbiology, 87, 726–734. doi:10.1046/j.1365-2672.1999.00918.x.

    Article  CAS  Google Scholar 

  20. Ponte, J. G., & Tsen, C. C. (1987). Bakery products. In L. R. Beuchat (Ed.), Food and beverage mycology (pp. 233–267, 2nd ed.). New York: AVI/Van Nostrand Reinhold.

    Google Scholar 

  21. Rocken, W. (1996). Applied aspects of sourdough fermentation. Advance Food Science Technology, 18, 212–216.

    CAS  Google Scholar 

  22. Silva, J., Carvalho, A. S., Teixeira, P., & Gibbs, P. A. (2002). Bacteriocin production by spray-dried lactic acid bacteria. Letters in Applied Microbiology, 34(2), 77–81. doi:10.1046/j.1472-765x.2002.01055.x.

    Article  CAS  Google Scholar 

  23. Sneath, P. H. A., Mair, N. S., Sharpe, N. E., & Holt, J. G. (1996). Bergey’s manual of systematic bacteriology, vol. 2 pp. 1219–1234. Baltimore, USA: Williams and Wilkins.

    Google Scholar 

  24. Spicher, G. (1983). Baked goods. In G. Reed (Ed.), Biotechnology. Food and feed productions with microorganisms, vol. 5 (pp. 1–80). Weinheim, Germany: Verlag Chemie.

    Google Scholar 

  25. Spicher, G. (1984). Die erreger der Schimmelbildung bei backawaren. 1. Mitt: die aufverpackten schinittbroten auftretenden schimmelpilze. Getreide Mehl Brot, 38, 77–80.

    Google Scholar 

  26. Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek, 70, 331–345. doi:10.1007/BF00395940.

    Article  CAS  Google Scholar 

  27. Stroem, K., Sjogren, J., Broberg, A., & Schnurer, J. (2002). Lactobacillus plantarum Mi LAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe–L-Pro) and Cyclo (L-Phe-trans-4-OH-L-Pro) and phenyl lactic acid. Applied and Environmental Microbiology, 68, 4322–4327. doi:10.1128/AEM.68.9.4322-4327.2002.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Immanuel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prema, P., Smila, D., Palavesam, A. et al. Production and Characterization of an Antifungal Compound (3-Phenyllactic Acid) Produced by Lactobacillus plantarum Strain. Food Bioprocess Technol 3, 379–386 (2010). https://doi.org/10.1007/s11947-008-0127-1

Download citation

Keywords

  • Molds
  • L. plantarum
  • Antifungal
  • NMR-IR-GC