Skip to main content
Log in

Gelling Properties of Tyrosinase-Treated Dairy Proteins

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Protein-based viscous gels can augment or replace carbohydrate-based ones for specific nutritional formulations such as in reduced calorie or low-fat food applications. In this study, slurries of whey protein isolates and calcium caseinate mixed with alginic acid (20% T.S.) were subjected to high-shear homogenization (microparticulation) at 27,000 rpm for 2, 3, 4, and 6 min. The resulting slurries were incubated with mushroom tyrosinase (E.C. 1.14.18.1) at levels of 3, 6, and 9 mg/100 g for 15, 30, and 60 min to facilitate gel formation of the alginic acid with the homogenized dairy proteins. The results indicate that the time of high-shear homogenization had significant (P < 0.05) effect on the viscosities of the gels. Highest gel viscosity was obtained with 6 mg tyrosinase at 60 min, but increases in gel viscosity depended on time of shear, with 2 and 4 min shear resulting in higher viscosity (484 and 6,143 cP) and stronger complex viscosity (49 and 38 Pa.s at 1 rad/s), respectively, compared to the control (69 cP) and (12 Pa.s at 1 rad/s). Gels were stable in refrigerated storage up to 240 h, strengthened with time of refrigeration storage, and became significantly more viscoelastic. Optimal viscous properties were obtained at 4 min microparticulation, 60 min incubation, and 6 mg tyrosinase treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AOAC (1998). Official methods of analysis (14th ed.). Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  • Bernal, V. M., Smajda, C. H., Smith, J. L., & Stanley, D. W. (1987). Interactions in protein/polysaccharide/calcium gels. Journal of Food Science, 52(5), 1121–1125, 1136. doi:10.1111/j.1365-2621.1987.tb14023.x.

    Article  CAS  Google Scholar 

  • Doi, E. (1993). Gels and gelling of globular proteins. Trends in Food Science & Technology, 4(1), 1–5. doi:10.1016/S0924–2244(05)80003–2.

    Article  CAS  Google Scholar 

  • Faergemand, M., Otte, J., & AdQvist, K. B. (1998). Cross-linking of whey proteins by enzymatic oxidation. Journal of Agricultural and Food Chemistry, 46, 1326–1333. doi:10.1021/jf970743c.

    Article  Google Scholar 

  • Huang, E. L., & Demerei, A. (2008). Enhanced human lysozyme production by Kluyveromyces lactis. Food Bioprocess Technology. doi:10.1007/s11947–008–0062–1.

  • Kuraishi, C., Yamazaki, K., & Susa, Y. (2001). Transglutaminase:its utilization in the food industry. Food Reviews International, 17(2), 221–246. doi:10.1081/FRI-100001258.

    Article  CAS  Google Scholar 

  • Lantto, R., Heine, E., Freddi, G., Lappalainen, A., Miettinen-Oinonen, A., Niku-Paavola, M. L., et al. (2005). Enzymatic modification of wool with tyrosinase and peroxidase. Journal of the Textile Institute, 96(2), 109–116. doi:10.1533/joti.2004.0080.

    Article  CAS  Google Scholar 

  • Lantto, R., Puolanne, E., Kruus, K., Buchert, J., & Autio, K. (2006). Tyrosinase-aided protein cross-linking: Effects on gel formation of chicken breast myofibrils and texture and water-holding of chicken breast meat homogenate gels. Journal of Agricultural and Food Chemistry, 55, 1248–1255. doi:10.1021/jf0623485.

    Article  Google Scholar 

  • McClements, D. J., Monahan, F. J., & Kinsella, J. E. (1993). Effect of emulsion droplets on the rheology of whey protein isolate gels. Journal of Texture Studies, 24, 411–422. doi:10.1111/j.1745-4603.1993.tb00051.x.

    Article  Google Scholar 

  • McMahon, D. J., Alleyne, M. C., Fife, R. L., & Oberg, C. J. (1996). Use of fat replacers in low fat mozzarella cheese. Journal of Dairy Science, 79, 1911–1921.

    Article  CAS  Google Scholar 

  • Onwulata, C. I., Konstance, R. P., & Tomasula, P. M. (2002). Viscous properties of microparticulated dairy proteins and sucrose. Journal of Dairy Science, 85, 1677–1683.

    Article  CAS  Google Scholar 

  • Seo, S. Y., Sharma, V. K., & Sharma, N. (2003). Mushroom tyrosinase: recent prospects. Journal of Agricultural and Food Chemistry, 51, 2837–2853. doi:10.1021/jf020826f.

    Article  CAS  Google Scholar 

  • Singer, N. S., & Dunn, J. M. (1990). Protein microparticulation: The principle and the process. Journal of the American College of Nutrition, 9(4), 388–397.

    CAS  Google Scholar 

  • Singer, N. S., Yamamoto, S., & Latella, J. (1988). Protein product base. US Patent 4,911,946.

  • Stevenson, A. J., Donald, A. M., & Gladden, L. F. (1994). Thermal aggregation of whey protein concentrates under fluid shear conditions. Biochemistry of Milk Products 150: 133–142.

    Google Scholar 

  • Streit, F., Corrieu, G., & Beal, C. (2008). Effect of centrifugation conditions on the cryotolerance of Lactobacillus bulgaricus CFL1. Food and Bioprocess Technology. doi:10.1007/s11947-008-0067-9.

  • Taylor, S. M., & Fryer, P. J. (1994). The effect of temperature/shear history on the thermal gelation of whey protein concentrates. Food Hydrocolloids, 8(1), 45–61.

    Article  CAS  Google Scholar 

  • Tolkach, A., & Kulozik, U. (2005). Fractionation of whey proteins and casinomacropeptide by means of enzymatic crosslinking and membrane separation techniques. Journal of Food Engineering, 67, 13–20. doi:10.1016/j.jfoodeng.2004.05.058.

    Article  Google Scholar 

  • Totosaus, A., Montejano, J. G., Salazar, J. A., & Guerrero, I. (2002). A review of physical and chemical protein-gel induction. International Journal of Food Science & Technology, 37, 589–601. doi:10.1046/j.1365-2621.2002.00623.x.

    Article  CAS  Google Scholar 

  • Walkenstrom, P., & Hermansson, A. M. (1997). Mixed gels of gelatine and whey proteins formed by combining temperature and high pressure. Food Hydrocolloids, 11, 457–470.

    Article  CAS  Google Scholar 

  • Walkenstrom, P., Windhab, E., & Hermansson, A. M. (1998). Shear induced structuring of particulate whey protein gels. Food Hydrocolloids, 12, 459–468. doi:10.1016/S0268-005X(98)00064-2.

    Article  CAS  Google Scholar 

  • Zasypkins, D. V., Dumay, E., & Cheftel, J. C. (1996). Pressure induced and heat-induced gelation of mixed β-lactoglobulin/xanthan solutions. Food Hydrocolloids, 10, 203–211.

    Article  Google Scholar 

  • Zeigler, G. R. (1991). Microstructure of mixed gelatin-egg white gels: Impact on rheology and application to microparticulation. Biotechnology Progress, 7, 283–287. doi:10.1021/bp00009a013.

    Article  Google Scholar 

  • Zhu, Y., & Granick, S. (2001). Viscosity of interfacial water. Physical Review Letters, 87(9), 1–4.

    Google Scholar 

Download references

Acknowledgments

The assistance of Dr. John Phillips with the experimental design, Dr. James Shieh and Mr. Jamal Booker with rheometry, and Ms. Zerlina Muir with gel preparation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles I. Onwulata.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onwulata, C.I., Tomasula, P.M. Gelling Properties of Tyrosinase-Treated Dairy Proteins. Food Bioprocess Technol 3, 554–560 (2010). https://doi.org/10.1007/s11947-008-0124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0124-4

Keywords

Navigation