Skip to main content
Log in

Blanching of Strawberries by Ohmic Heating: Effects on the Kinetics of Mass Transfer during Osmotic Dehydration

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of blanching by ohmic heating (OH) on the kinetics of osmotic dehydration of strawberries was studied. Ohmic heating parameters obtained at two temperatures (65 and 85 °C). The osmotic dehydration (OD) parameters are the temperature (26 and 37 °C) and the sucrose in osmotic solution (30–70 °B). An approximate solution of Fick’s law for unsteady state mass transfer in spherical configuration has been used to calculate the effective diffusion coefficients of water and sucrose. Results show that ohmic heating increases drastically the mass transfer and the effective diffusion rates. After 4 h of OD (without OH) in a sucrose solution (at 37 °C and 70 °B), the dry matter of the untreated strawberry halves was 20.3%; while it reached 68% when OD was combined with blanching by OH at 85 °C for 3-min. Ohmic blanching permits the effective damage of cells by combination of electrical and thermal effects. That result has an important enhancement of water and sugar transfers during osmotic dehydration of strawberries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OD:

osmotic dehydration.

OH:

ohmic heating.

°B :

Brix

C e :

concentration at equilibrium, g/g.

C :

sugar concentration in the fruit, g/g.

C 0 :

initial sugar concentration, g/g.

D eq :

equivalent diffusion coefficient for the spherical fruit, m2/s.

D 1/2 :

effective diffusion coefficient for the semi-spherical fruit, m2/s.

D w :

effective diffusion coefficient of water for the spherical fruit, m2/s.

D s :

effective diffusion coefficient of sugar for the spherical fruit, m2/s.

D w1/2 :

effective diffusion coefficient of water for the semi-spherical fruit, m2/s.

D s1/2 :

effective diffusion coefficient of sugar for the semi-spherical fruit, m2/s.

R 1/2 :

radius of semi-sphere, m.

R eq :

radius of sphere, m.

S eq :

surface of spherical fruit, m2.

S 1/2 :

surface of semi-spherical fruit, m2.

SG:

sugar gain, g/g.

SG t :

sugar gain at time t, g/g.

SG0 :

sugar gain at time 0, g/g.

SG :

sugar gain at equilibrium, g/g.

t :

immersion time, s.

W t :

fruit weight at the end of treatment, g.

WL:

water loss, g/g.

WL t :

water loss at time t, g/g.

WL0 :

water loss at time 0, g/g.

WL :

water loss at equilibrium, g/g.

WL/SG:

selectivity.

WS t :

solids weight in the fruit at the end of treatment, g.

WS0 :

initial weight of solids, g.

WW0 :

initial weight of water, g.

References

  • Allali, H. (2008). Production of fruits jams by osmotic dehydration coupled with ohmic heating. PhD thesis, Génie des Procédés Industriels: Université de Technologie de Compiègne, Compiègne, France.

  • Amami, E. (2006). Amélioration de la déshydratation osmotique des produits végétaux par champ électrique pulsé. Thèse de doctorat, Génie des Procédés Industriels: Université de Technologie de Compiègne, Compiègne, France.

  • Amami, E., Vorobiev, E., & Kechaou, N. (2005). Effect of pulsed electric field on the osmotic dehydration and mass transfer kinetics of apple tissue. Drying Technology, 23(3), 581–595. doi:10.1081/DRT-200054144.

    Article  CAS  Google Scholar 

  • Angersbach, A., & Knorr, D. (1997). High intensity electric field pulses as pretreatment for affecting dehydration characteristics and rehydration properties of potato cubes. Nahrung, 41, 194–200. doi:10.1002/food.19970410403.

    Article  Google Scholar 

  • Angersbach, A., Heinz, V., & Knorr, D. (1999). Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Biotechnology Progress, 15, 753–762.

    Article  CAS  Google Scholar 

  • Bazhal, M. (2001) Etude du mécanisme d’électroperméabilisation des tissus végétaux. Application à l’extraction du jus de pommes. Thèse de doctorat. Génie des Procédés Industriels, Université de Technologie de Compiègne, Compiègne, France.

  • Bonaui, C., Dumoulin, E., Raoult-Wack, A. L., Berk, Z., Bimbenet, J. J., Courtois, F., et al. (1996). Food drying and dewatering. Drying Technology, 14(9), 2135–2170. doi:10.1080/07373939608917199.

    Article  Google Scholar 

  • Cano, M. P. (1996). Vegetables. In L. E. Jeremiah (Ed.), Freezing effects on food 604 quality (p. 520). New York: Marcel Dekker.

    Google Scholar 

  • Castello, M. L., Fito, P. J., & Chiralt, A. (2006). Effect of osmotic dehydration and vacuum impregnation on respiration rate of cut strawberries. LWT-Food Science and Technology, 39, 1171–1179.

    Article  CAS  Google Scholar 

  • Conway, J., Castaigne, F., Picard, G., & Vovan, X. (1983). Mass transfer considerations in the osmotic dehydration of apples. Canadian Institute of Food Science and Technology Journal, 16, 25–29.

    Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion, 2nd Ed. New York: Oxford University Press.

    Google Scholar 

  • Ferrando, M., & Spiess, W. (2003). Mass transfer in strawberry tissue during osmotic treatment I: microstructural changes. Journal of Food Science, 68, 1347–1355. doi:10.1111/j.1365-2621.2003.tb09649.x.

    Article  CAS  Google Scholar 

  • Fito, P. (1994). Modelling of vacuum osmotic dehydration of food. Journal of Food Engineering, 22, 313–228. doi:10.1016/0260-8774(94)90037-X.

    Article  Google Scholar 

  • Galmarini, M. V., Chirife, J., Zamora, M. C., & Pérez, A. (2008). Determination and correlation of the water activity of unsaturated, supersaturated and saturated trehalose solutions. LWT-Food Science and Technology, 41(4), 628–631.

    Article  CAS  Google Scholar 

  • Garcia-Martiez, E., Ruiz, G., Martinez-Monzo, J., Camatcho, M. M., Martinez-Navarette, N., & Chiralt, A. (2002). Jam manufacture with osmodehydrated fruit. Food Research International, 35, 301–306. doi:10.1016/S0963-9969(01)00200-9.

    Article  Google Scholar 

  • Giangiacomo, R., Torreggiani, D., & Abbo, E. (1987). Osmotic dehydration of fruit, Part I: sugar exchange between fruit and extracting syrup. Journal of Food Processing and Preservation, 11, 183–195.

    Article  CAS  Google Scholar 

  • Hawkes, J., & Flink, J. M. (1978). Osmotic concentration of fruit slices prior to freeze dehydration. Journal of Food Processing and Preservation, 2, 265–284. doi:10.1111/j.1745-4549.1978.tb00562.x.

    Article  CAS  Google Scholar 

  • Hough, G., Chirife, J., & Marini, C. (1993). A simple model for osmotic dehydration of apples. Lebensmittel-Wissenschaft und-Technologie, 26, 151–156.

    Article  CAS  Google Scholar 

  • Icier, F., Yildiz, H., & Baysal, T. (2006). Peroxidase inactivation and colour changes during ohmic blanching of pea puree. Journal of Food Engineering, 74(3), 424–429. doi:10.1016/j.jfoodeng.2005.03.032.

    Article  CAS  Google Scholar 

  • Kaymak-Ertekin, F., & Cakaloz, T. (1996). Osmotic dehydration of peas: I. Influence of process variables on mass transfer. Journal of Food Processing and Preservation, 20, 87–104. doi:10.1111/j.1745-4549.1996.tb00848.x.

    Article  Google Scholar 

  • Krokida, M. K., Karathanos, V. T., & Maroulis, Z. B. (2000). Effect of osmotic dehydration on colour and sorption characteristics of apple and banana. Drying Technology, 18, 937–950. doi:10.1080/07373930008917745.

    Article  CAS  Google Scholar 

  • Le Maguer, M. (1988). Osmotic dehydration: review and future directions. In Proceedings of the International Symposium on Progress in Food Preservation Processes 1: 283–309 Brussels, CERIA.

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2001). Pulsed electric field breakage of cellular tissues: visualization of percolative properties. Innovative Food Science & Emerging Technologies, 2(2), 113–125. doi:10.1016/S1466-8564(01)00024-8.

    Article  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54, 337–346. doi:10.1016/S0260-8774(01)00220-5.

    Article  Google Scholar 

  • Lebovka, N. I., Praporscic, I., & Vorobiev, E. (2004). Combined treatment of apples by pulsed electrical fields and by heating at mo derate temperature. Journal of Food Engineering, 65, 211–217. doi:10.1016/j.jfoodeng.2004.01.017.

    Article  Google Scholar 

  • Lenart, A. (1992). Mathematical modelling of osmotic dehydration of apple and carrot. Journal of Food and Nutrition Sciences, 1(42), 33–44.

    Google Scholar 

  • Lenart, A., & Flink, J. M. (1984). Osmotic concentration of potato: II. Spatial distribution of osmotic effect. Journal of Food Technologyogy, 19, 65–89.

    Google Scholar 

  • Marchal, L., Allali, H., & Vorobiev, E. (2005). Blanchiment de fraises par chauffage ohmique: incidence sur la cinétique de déshydratation impregnation par immersion, In: Récents Progrès en Génie des Procédés, Numéro 92 ISBN 2-910239-66-7, Ed. Lavoisier, Paris, France.

  • Mavroudis, N. E., Dejmek, P., & Sjöholm, I. (2004). Osmotic treatment induced cell death and osmotic processing kinetics of apples with characterised raw material properties. Journal of Food Engineering, 63, 47–56. doi:10.1016/S0260-8774(03)00281-4.

    Article  Google Scholar 

  • Mizrahi, S. (1996). Leaching of soluble solids during blanching of vegetables by ohmic heating. Journal of Food Engineering, 29, 153–166. doi:10.1016/0260-8774(95)00074-7.

    Article  Google Scholar 

  • Nanjundaswamy, A. M., Radhakrishnaiah Setty, G., Balachandran, C., Saroja, S., & Murthy Reddy, K. B. S. (1978). Studies on development of new categories of dehydrated product from indigenious fruits. Indian Food Packer, 22, 91–93.

    Google Scholar 

  • Ponting, J. D. (1973). Osmotic dehydration of fruits: recent modifications and applications. Process Biochemistry, 8, 18–20.

    CAS  Google Scholar 

  • Ponting, J. D., Watters, G. G., Forrey, R. R., Jackson, R., & Stanley, W. L. (1966). Osmotic dehydration of fruits. Journal of Food Technology, 29(10), 125–129.

    Google Scholar 

  • Praporscic, I., Lebovka, N. I., Ghnimi, S., & Vorobiev, E. (2006). Ohmically heated, enhanced expression of juice from soft vegetable tissues. Biosystems Enginering, 93, 199–204. doi:10.1016/j.biosystemseng.2005.11.002.

    Article  Google Scholar 

  • Ramaswamy, H. S., & Nsonzi, F. (1998). Convective-air drying kinetics of osmotically pre-treated blueberries. Drying Technology, 16, 743–59. doi:10.1080/07373939808917433.

    Article  CAS  Google Scholar 

  • Raoult-Wack, A. L. (1994). Advances in osmotic dehydration. Trends in Food Science & Technology, 5, 255–260. doi:10.1016/0924-2244(94)90018-3.

    Article  Google Scholar 

  • Raoult-Wack, A. L., Lenart, A., & Guilbert, S. (1992). Recent advances in dewatering through immersion in concentrated solution. In A. S. Majumdar (Ed.), Drying solids (pp. 21–51). New York: International Science.

    Google Scholar 

  • Rastogi, N. K., Eshtisghi, M. N., & Knorr, D. (1999). Accelerated mass transfer during osmotic dehydration of high intensity electrical field pulse pretreated carrots. Journal of Food Science, 64, 1020–1023. doi:10.1111/j.1365-2621.1999.tb12272.x.

    Article  CAS  Google Scholar 

  • Rastogi, N. K., & Raghavarao, K. S. M. S. (1995). Kinetics of osmotic dehydration of coconut. Journal of Food Process Enginering, 18, 187–97. doi:10.1111/j.1745-4530.1995.tb00362.x.

    Article  Google Scholar 

  • Rastogi, N. K., & Raghavarao, K. S. M. S. (1996). Kinetics of osmotic dehydration under vacuum. Lebensmittel-Wissenschaft Technologie, 29, 669–672. doi:10.1006/fstl.1996.0103.

    Article  CAS  Google Scholar 

  • Reznick, D. (1996). Ohmic heating of fluid foods: ohmic heating for thermal processing of foods: Government, industry, and academic perspectives. Food Technologyogy, 50, 250–251.

    Google Scholar 

  • Sastry, S. K., & Li, Q. (1996). Modelling the ohmic heating of foods. Food Technology, 50, 246–248.

    Google Scholar 

  • Sastry, S. K., Yousef, A., Cho, H. Y., Unal, R., Salengke, S., Wang, W. C. et al. (2001). Ohmic heating and moderate electric field (MEF) processing. In: Engineering and Food for the 21st Century.

  • Simal, S., Benedito, J., Sanchez, E. S., & Rossello, C. (1998). Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering, 36, 323–336. doi:10.1016/S0260-8774(98)00053-3.

    Article  Google Scholar 

  • Taiwo, K. A., Angersbach, A., Ade-Omowaye, B. I. O., & Knorr, D. (2001). Effect of pretreatments on the diffusion kinetics and some quality parameters of osmotically dehydrated apple slices. Journal of Agricultural and Food Chemistry, 49, 2804–2811. doi:10.1021/jf0009798.

    Article  CAS  Google Scholar 

  • Torreggiani, D. (1993). Osmotic dehydration in fruit and vegetable processing. Food Research International, 26, 59–68. doi:10.1016/0963-9969(93)90106-S.

    Article  Google Scholar 

  • Veinik, A. (1958). Approximative calculations of the thermo-conductivity processes, Moscow, Gosenegoizdat. p. 169–175.

Download references

Acknowledgment

The authors would like to thank the “Pole Regional Genie des Procédés” (Picardie, France) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugène Vorobiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allali, H., Marchal, L. & Vorobiev, E. Blanching of Strawberries by Ohmic Heating: Effects on the Kinetics of Mass Transfer during Osmotic Dehydration. Food Bioprocess Technol 3, 406–414 (2010). https://doi.org/10.1007/s11947-008-0115-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0115-5

Keywords

Navigation