Skip to main content
Log in

Mass Transfer Modeling During Osmotic Dehydration of Hexahedral Pineapple Slices in Limited Volume Solutions

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The study of mass transfer during osmotic dehydration process in limited volume solutions was carried out to evaluate the diffusion coefficients of sucrose and water in the osmotic treatment of hexahedral pineapple slices. The experimental osmotic dehydration kinetics for pineapple slices of two different sizes were conducted at 25 °C using a 1:1 solution to fruit weight ratio. The analytical solution of a 3D mass transfer model considering a limited volume of osmotic solution (i.e., an osmotic media of variable solute concentration) was used for describing the mass transfer in osmotic dehydration of pineapple slices. This model was fitted to the experimental kinetics by means of nonlinear regression to obtain the diffusion coefficients. Additionally, the diffusion coefficients were evaluated considering an infinite volume of osmotic solution (i.e., an osmotic media of constant solute concentration). Results showed that the proposed model may be fitted accurately to the experimental osmotic dehydration kinetics and allows the estimation of diffusion coefficients when solute concentration in the osmotic media varies along the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alakali, J. S., Ariahu, C. C., & Nkpa, N. N. (2006). Kinetics of osmotic dehydration of mango. Journal of Food Processing and Preservation, 30, 597–607.

    Article  CAS  Google Scholar 

  • Bidaisee, G., & Badrie, N. (2001). Osmotic dehydration of cashew apples (Anacardium occidentale L.): Quality evaluation of candied cashew apples. International Journal of Food Science and Technology, 36, 71–78.

    Article  CAS  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). Bristol, England: Oxford University Press.

    Google Scholar 

  • Cunha, L. M., Oliveira, F. A. R., Aboim, A. P., Frías, J. M., & Pinheiro-Torres, A. (2001). Stochastic approach to the modeling of water losses during osmotic dehydration and improved parameter estimation. International Journal of Food Science and Technology, 36, 253–262.

    Article  CAS  Google Scholar 

  • Eichler, S., Ramon, O., Cohen, Y., & Mizrahi, S. (2002). Swelling and contraction driven mass transfer processes during osmotic dehydration of uncharged hydrogels. International Journal of Food Science and Technology, 37, 245–253.

    Article  CAS  Google Scholar 

  • Genina-Soto, P., Barrera-Cortes, J., Gutierrez-Lopez, G., & Azuara-Nieto, E. (2001). Temperature and concentration effects of osmotic media on OD profiles of sweet potato cubes. Drying Technology, 19(3&4), 547–558.

    Article  CAS  Google Scholar 

  • Lerici, C. R., Pinnavaia, G., Dalla-Rosa, M., & Bartolucci, L. (1985). Osmotic dehydration of fruit: Influence of osmotic agents on drying behavior and product quality. Journal of Food Science, 50, 1217–1219.

    Article  CAS  Google Scholar 

  • Li, H., & Ramaswamy, H. S. (2006). Osmotic dehydration of apple cylinders: I. Conventional batch processing conditions. Drying Technology, 24, 619–630.

    Article  CAS  Google Scholar 

  • Mendoza, R., & Schmalko, M. E. (2002). Diffusion coefficients of water and sucrose in osmotic dehydration of papaya. International Journal of Food Properties, 5(3), 537–546.

    Article  CAS  Google Scholar 

  • Moreno-Castillo, E. J., González-García, R., Grajales-Lagunes, A., Ruiz-Cabrera, M. A., & Abud-Archila, M. (2005). Water diffusivity and color of cactus pear fruits (Opuntia ficus indica) subjected to osmotic dehydration. International Journal of Food Properties,, 8, 323–336.

    Article  Google Scholar 

  • Mujaffar, S., & Sankat, C. K. (2006). The mathematical modeling of the osmotic dehydration of shark fillets at different brine temperatures. International Journal of Food Science and Technology, 41, 405–416.

    Article  CAS  Google Scholar 

  • Oliveira, I. M., Fernandes, F. A. N., Rodrigues, S., Sousa, P. H. M., Maia, G. A., & Figueiredo, W. (2006). Modeling and optimization of osmotic dehydration of banana followed by air drying. Journal of Food Process Engineering, 29, 400–413.

    Article  Google Scholar 

  • Pan, Y. K., Zhao, L. J., Zhang, Y., Chen, G., & Mujumdar, A. S. (2003). Osmotic dehydration pre-treatment in drying of fruits and vegetables. Drying Technology, 21(6), 1101–1114.

    Article  CAS  Google Scholar 

  • Panagiotou, N. M., Karathanos, V. T., & Maroulis, Z. B. (1998). Mass transfer modeling of the osmotic dehydration of some fruits. International Journal of Food Science and Technology, 33, 267–284.

    Article  CAS  Google Scholar 

  • Pereira, L. M., Ferrari, C. C., Mastrantonio, S. D. S., Rodrigues, A. C. C., & Hubinger, M. D. (2006). Kinetic aspects, texture, and color evaluation of some tropical fruits during osmotic dehydration. Drying Technology, 24, 475–484.

    Article  CAS  Google Scholar 

  • Rosselló, C., Cañellas, J., Simal, S., & Berna, A. (1992). Simple mathematical model to predict the drying rates of potatoes. Journal of Agriculture and Food Chemistry, 40, 2374–2378.

    Article  Google Scholar 

  • Ruiz-López, I. I., & García-Alvarado, M. A. (2007). Analytical solution for food-drying kinetics considering shrinkage and variable diffusivity. Journal of Food Engineering, 79, 208–216.

    Article  Google Scholar 

  • Shi, J., & Le Maguer, M. (2002). Osmotic dehydration of foods: Mass transfer and modeling aspects. Food Reviews International, 18(4), 305–335.

    Article  Google Scholar 

  • Singh, B., Kumar, A., & Gupta, A. K. (2007). Study of mass transfer kinetics and effective diffusivity during osmotic dehydration of carrot cubes. Journal of Food Engineering, 79, 471–480.

    Article  CAS  Google Scholar 

  • Van Nieuwenhuijzen, N. H., Zareifard, M. R., & Ramaswamy, H. S. (2001). Osmotic drying kinetics of cylindrical apple slices of different sizes. Drying Technology, 19(3&4), 525–545.

    Article  Google Scholar 

  • Waliszewski, K. N., Delgado, J. L., & García, M. A. (2002). Equilibrium concentration and water and sucrose diffusivity in osmotic dehydration of pineapple slabs. Drying Technology, 20(2), 527–538.

    Article  CAS  Google Scholar 

  • Waliszewski, K. N., Texon, N. I., Salgado, M. A., & García, M. A. (1997). Mass transfer in banana chips during osmotic dehydration. Drying Technology, 15(10), 2597–2607.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Mexican Consejo Nacional de Ciencia y Tecnología (CONACyT) and the Mexican Consejo del Sistema Nacional de Educación Tecnológica (COSNET) for the financial support through the projects G35128-B and 420.01.02-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ruiz-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-López, I.I., Castillo-Zamudio, R.I., Salgado-Cervantes, M.A. et al. Mass Transfer Modeling During Osmotic Dehydration of Hexahedral Pineapple Slices in Limited Volume Solutions. Food Bioprocess Technol 3, 427–433 (2010). https://doi.org/10.1007/s11947-008-0102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0102-x

Keywords

Navigation