Skip to main content
Log in

Purification of Lycopene by Reverse Phase Chromatography

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This work investigates the potential of various hydrophobic matrices for the separation and purification of lycopene from microbial biomass obtained from fermentation using Blakeslea trispora. The lycopene purification method was developed in two steps. In the first step, carotenoids were extracted from the biomass of B. trispora with petroleum ether/acetone (1:1). In the second step, this partially purified carotenoid extract was further purified by reverse phase chromatography technique. Various binding conditions were studied to achieve maximum amount of lycopene bound onto the chromatographic matrices. Column studies on the elution conditions of lycopene using linear and step gradient method were investigated. Purification of lycopene using packed bed column by reverse phase chromatography matrix HP20 was carried out using step gradient of 55% isopropyl alcohol in acetone followed by 65% isopropyl alcohol in acetone. The purity and recovery of lycopene was checked using Knauer high-performance liquid chromatography (HPLC) system. A 89% recovery of lycopene of HPLC purity 95% was achieved with substantial success. Proton magnetic resonance of the purified sample showed close resemblance with the chemical shifts (δ values) of the standard lycopene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Al-Wandawi, H., Abdul-Rahman, M., & AL-Shaiky, K. (1985). Tomato processing wastes as essential raw material source. Journal of Agricultural and Food Chemistry, 33, 804–807.

    Article  CAS  Google Scholar 

  • Barrie, T. (1988). Analytical and preparative chromatography of tomato paste carotenoids. Journal of Food Science, 53(3), 954–959.

    Article  Google Scholar 

  • Bhosale, P. (2004). Environmental and cultural stimulants in the production of carotenoids from microorganisms. Applied Microbiology and Biotechnology, 63, 351–361.

    Article  CAS  Google Scholar 

  • Bramley, P. M. (2000). Is lycopene beneficial to human health? Phytochemistry, 54, 233–236.

    Article  CAS  Google Scholar 

  • Chandler, L. A., & Schwartz, S. J. (1987). HPLC-separation of cis-trans isomers in fresh and processed fruits and vegetables. Journal of Food Science, 52, 669–672.

    Article  CAS  Google Scholar 

  • Choudhari, S., Ananthanarayan, L., & Singhal, R. (2008a). Use of metabolic stimulators and inhibitors for enhanced production of lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource Technology (in press).

  • Choudhari, S., & Singhal, R. (2008). Media optimization for the production of β-carotene by B. trispora: A statistical approach. Bioresource Technology, 99(4), 722–730.

    Article  CAS  Google Scholar 

  • Codgell, R. J. (1985). Carotenoids in photosynthesis. Pure and Applied Chemistry, 57, 723–728.

    Article  Google Scholar 

  • Conn, P. F., Schalch, W., & Truscot, T. G. (1991). The singlet oxygen and carotenoids interaction. Journal of Photochemistry and Photobiology B: Biology, 11, 41–47.

    Article  CAS  Google Scholar 

  • Devasagayam, T. P. A., Werner, T., Ippendorf, H., Martin, H. D., & Sies, H. (1992). Synthetic carotenoids, novel polyene polyketones and new capsorubin isomers as efficient quenchers of singlet molecular oxygen. Photochemistry and Photobiology, 55, 511–514.

    Article  CAS  Google Scholar 

  • Di Mascio, P., Wefers, H., Do-Thi, H. P., Lafleur, M. V. M., & Sies, H. (1989). Singlet molecular oxygen causes loss of biological activity in plasmid and bacteriophage DNA and induces single-strand breaks. Biochimica et Biophysica Acta, 1007, 151–157.

    Google Scholar 

  • Estrella, A., Lopez-Ortiz, J. F., Cabri, W., Rodriguez-Otero, C., Fraile, N., Erbez, A. J., et al. (2004). Natural lycopene from Blakeskea trispora: All-trans lycopene thermochemical and structural properties. Thermochimica Acta, 417, 157–161.

    Article  CAS  Google Scholar 

  • Hakala, S. H., & Heinonen, M. (1994). Chromatographic purification of natural lycopene. Journal of Agricultural and Food Chemistry, 42, 1314–1316.

    Article  CAS  Google Scholar 

  • Heinonen, M. I., Ollilainen, V., Varo, P. T., & Koivistoinen, P. E. (1989). Carotenoids in Finnish foods: Vegetables, fruits and berries. Journal of Agricultural and Food Chemistry, 37, 655–59.

    Article  CAS  Google Scholar 

  • Johnson, E., & Schroeder, W. (1996). Microbial carotenoids. Advanced Biochemical Engineering and Biotechnology, 53, 119–178.

    CAS  Google Scholar 

  • Koyama, Y., Hosomi, M., Miyata, A., Hashimoto, H., & Reames, S. A. (1988). Supplementary and revised assignment of the 7,9-9,9′, 13,13′-,9, 13′-di-cis and 9,9′, 13-tri-cis isomers of β-carotene in high performance liquid chromatography using a column of calcium hydroxide. Journal of Chromatography, 439, 417–422.

    Article  CAS  Google Scholar 

  • Latip, R. A., Baharin, B. S., Che Man, Y. B., & Rahman, R. A. (2000). Evaluation of different types of synthetic adsorbents for carotene extraction from crude palm oil. Journal of the American Oil Chemists Society, 77(12), 1277–1282.

    Article  CAS  Google Scholar 

  • Lesellier, E., Marty, C., Berset, C., & Tchapla, A. (1989). Optimization of the isocratic non aqueous reverse phase (NARP) HPLC separation of trans/cis- α- and β-carotene. Journal of High Resolution Chromatography, 12, 447–5–454.

    Article  CAS  Google Scholar 

  • López-Nieto, M. J., Costa, J., Peiro, E., Mendez, E., Rodriguez-Saiz, M., De la Fuente, J. L., et al. (2004). Biotechnological lycopene production by mated fermentation of Blakeslea trispora. Applied Microbiology and Biotechnology, 66, 153–159.

    Article  Google Scholar 

  • Nelis, H. J., & DeLeeheer, A. P. (1982). Isocratic nonaqueous reversed phase liquid chromatography of carotenoids. Analytical Chemistry, 55, 270–275.

    Article  Google Scholar 

  • Nelis, H. J., & DeLeeheer, A. P. (1991). Microbial sources of carotenoid pigments used in food and feeds. Journal of Applied Bacteriology, 70, 181–191.

    CAS  Google Scholar 

  • Nyambaka, H., & Ryley, J. (1996). An isocratic reversed-phase HPLC separation of the stereoisomers of the provitamin A carotenoids (α- and β-carotene) in dark green vegetables. Food Chemistry, 55(1), 63–72.

    Article  CAS  Google Scholar 

  • Quackenbush, F. W. (1987). Reverse phase HPLC separation of cis- and trans- carotenoids and its application to β-carotenes in food materials. Journal of Liquid Chromatography, 10, 643–653.

    Article  CAS  Google Scholar 

  • Rao, R. V., & Agarwal, S. (1999). Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutrition Research, 19, 305–323.

    Article  CAS  Google Scholar 

  • Scopes, R. K. (1987). Protein purification: Principles and practice. Cantor CR and Springer, New York.

  • Stahl, W., Schwartz, W., Sunqvist, A. R., & Sies, H. (1992). Cis-trans isomers of lycopene and β-carotene in human serum and tissues. Archives of Biochemistry and Biophysics, 294, 173–177.

    Article  CAS  Google Scholar 

  • Truscott, T. G. (1990). New trends in photophysics and photochemistry of the carotenoids. Journal of Chromatography, 6, 359–371.

    CAS  Google Scholar 

  • Tsukida, K., Saiki, K., Takii, T., & Koyama, Y. (1982). Separation and determination of cis-trans- β-carotenes by high-performance liquid chromatography. Journal of Chromatography, 245, 359–364.

    Article  CAS  Google Scholar 

  • Wang, Zhi-hua, Qi, Guo-xiu, Chen, Chao, Zhang, Wei-qiang, Liu, Kai-lu, & Zhao, Jing-cheng (2005). Preparation of high-purity all-trans- lycopene with PRP-6 resin. Ziran Kexueban, 32(1), 109–111.

    Google Scholar 

  • Zhang, Yuqing, Zhang, Liming, Meng, Li, & Zhao, Xueming (2002). Adsorption and desorption of lycopene and β-carotene using three macroporous adsorption resins, Xueming. Zhongcaoyao, 33(7), 602–604.

    CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Northern Regional Research Laboratories culture collection (NRRL), USA for the supply of strains as well as Phytoremedies Laboratories, Pune, India for standard lycopene powder (86%) as a gift sample. We are thankful to Mitsubishi, Japan for providing us with the matrices. The authors gratefully acknowledge Department of Biotechnology (DBT), Government of India, for the financial support in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha S. Singhal.

Appendix

Appendix

Calculations for HETP and NTU for HP 20

  1. 1.

    Area under the curve \(\left( {{\text{AUC}}} \right) = 60 \times 2 \times 5 = 600\;\mu {\text{g}}\) of lycopene

  2. 2.

    Total lycopene loaded during breakthrough (W)

    $$W = C_{\text{i}} \left( {V_{\text{E}} - V_{\text{B}} } \right) = 46.98\left( {42 - 18} \right) = 1127.52\;\mu {\text{g}}$$
  3. 3.

    Lycopene adsorbed during breakthrough (W a)

    $$\begin{array}{*{20}c} {W_{\text{a}} = \left( {W - {\text{AUC}}} \right)} \\ { = \left( {1127.52 - 600} \right)} \\ { = 527.52\;\mu {\text{g}}} \\ \end{array} $$
  4. 4.

    Fraction of lycopene adsorbed

    $$f = \left( {{{W_{\text{a}} } \mathord{\left/ {\vphantom {{W_{\text{a}} } W}} \right. \kern-\nulldelimiterspace} W}} \right) = \left( {{{527.52} \mathord{\left/ {\vphantom {{527.52} {1127.52}}} \right. \kern-\nulldelimiterspace} {1127.52}}} \right) = 0.467$$
  5. 5.

    Length of adsorption zone (L a)

    $$\begin{array}{*{20}c} {L_a = }{\frac{{L\left( {V_E - V_B } \right)}}{{V_E - \left( {1 - f} \right)\left( {V_E - V_B } \right)}}} \\ {L_a = }{\frac{{12\left( {42 - 18} \right)}}{{42 - \left( {1 - 0.467} \right)\left( {42 - 18} \right)}} = 9.86\;cm} \\ \end{array} $$
  6. 6.

    Number of transfer unit (N)

    $$N = 16\left( {\frac{{V_R }}{{V_E - V_B }}} \right)^2 = 16\left\{ {{{34} \mathord{\left/ {\vphantom {{34} {\left( {42 - 18} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {42 - 18} \right)}}} \right\}^2 = 32.09 \approx 32$$
  7. 7.

    Height equivalent to theoretical plate (HETP)

    $${\text{HETP}} = {{L_{\text{a}} } \mathord{\left/ {\vphantom {{L_{\text{a}} } N}} \right. \kern-\nulldelimiterspace} N} = {{9.86} \mathord{\left/ {\vphantom {{9.86} {32.09}}} \right. \kern-\nulldelimiterspace} {32.09}} = 0.30\;{\text{cm}}$$
  8. 8.

    Dynamic binding capacity (DBC)

    $$\begin{array}{*{20}c} {{\text{DBC}} = \left( {V_{\text{B}} \times C_{\text{i}} } \right) + {{\left( {{\text{number}}\;{\text{of}}\;{\text{boxes}}\;{\text{above}}\;{\text{the}}\;{\text{curve}} \times {\text{scale}}} \right)} \mathord{\left/ {\vphantom {{\left( {{\text{number}}\;{\text{of}}\;{\text{boxes}}\;{\text{above}}\;{\text{the}}\;{\text{curve}} \times {\text{scale}}} \right)} {V_{\text{m}} }}} \right. \kern-\nulldelimiterspace} {V_{\text{m}} }}} \\ {92.67\;{{\mu {\text{g}}} \mathord{\left/ {\vphantom {{\mu {\text{g}}} {{\text{ml}}}}} \right. \kern-\nulldelimiterspace} {{\text{ml}}}}} \\ \end{array} $$

Where

C i :

lycopene concentration of loaded sample (46.98 μg/ml)

V E :

Exhaust volume (18 cm3)

V B :

Breakthrough volume (42 cm3)

L :

Packing length (12 cm)

ɛ :

Void fraction (for spherical dumped packing ≈0.4)

V R :

Retention volume (34 cm3)

V m :

Volume of the matrix (15.92 cm3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhari, S.M., Ananthanarayan, L. & Singhal, R.S. Purification of Lycopene by Reverse Phase Chromatography. Food Bioprocess Technol 2, 391–399 (2009). https://doi.org/10.1007/s11947-008-0054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0054-1

Keywords