Skip to main content
Log in

Evaluation of Norrish’s Equation for Correlating the Water Activity of Highly Concentrated Solutions of Sugars, Polyols, and Polyethylene Glycols

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Norrish’s equation, \(a_{{\text{w}}} = X_{{\text{w}}} \exp {\left( { - KX^{2}_{{\text{s}}} } \right)}\), where a w is water activity, X w and X s are molar fractions of water and solute, respectively, and K is the correlating constant, has been widely used to predict a w of aqueous nonelectrolyte solutions in connection with development of intermediate moisture foods, i.e., food having a w ≥ 0.85. Present work evaluated the ability of Norrish’s equation to model the water activity of solutions of sugars, polyols, and some polyethylene glycols, in a wide range of concentration, i.e., from low to highly concentrated solutions. For sugar and polyols, a relatively small modification of the “most accepted” literature parameters K allowed the fitting of the data for the wide range of solute concentrations corresponding to a range of a w from 0.99 to about 0.3 for same solutes. However, a modified Norrish’s model needs to be used to model the behavior of polyethylene glycols 400 and 600 up to water activities as low as 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alzamora, S. M., Chirife, J., & Gerschenson, L. N. (1994). Determination and correlation of the water activity of propylene glycol solutions. Food Research International, 27, 65–67.

    Article  CAS  Google Scholar 

  • AOAC (2003). Official methods of analysis of AOAC International (17th ed.). Gaithersburg, MA: AOAC International.

    Google Scholar 

  • Bell, L. N., & Labuza, T. P. (2000). Moisture sorption—Practical aspects of isotherm measurement and use (2nd ed.). Egan, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Bubnik, Z., Kadlec, P., Urban, D., & Bruhns, M. (1995). Sugar technologists manual p. 162. Berlin, Germany: Dr. Albert Bartens.

    Google Scholar 

  • Chirife, J., Favetto, G., & Ferro Fontán, C. (1982). The water activity of fructose solutions in the intermediate moisture range. Lebensmittel Wissenschaft und Technologie, 15, 159–160.

    CAS  Google Scholar 

  • Chirife, J., & Ferro Fontán, C. (1980). A study of water activity lowering behavior of polyethylene glycols in the intermediate moisture range. Journal Food Science, 45, 1717–1720.

    Article  CAS  Google Scholar 

  • Chirife, J., Ferro Fontán, C., & Benmergui, E. A. (1980). The prediction of water activity in aqueous solutions in connection with intermediate moisture foods. Journal Food Technology, 15, 59–70.

    Article  CAS  Google Scholar 

  • Comesaña, J. F., Correa, A., & Sereno, A. (2001). Water activity at 35°C in sugar + water and sugar + sodium chloride + water systems. International Journal of Food Science and Technology, 36, 655–661.

    Article  Google Scholar 

  • Favetto, G. J., Resnik, S. L., & Ferro Fontán, C. (1983). Statistical evaluation of water activity measurements obtained with the Vaisala Humicap humidity meter. Journal Food Science, 487, 534–538.

    Article  Google Scholar 

  • Ferro Fontán, C., & Chirife, J. (1981). The evaluation of water activity in aqueous solutions from freezing point depression. Journal Food Technology, 16, 21–30.

    Article  Google Scholar 

  • Hildebrand, J. H., & Scott, R. L. (1962). Regular solutions. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Leiras, M. C., Alzamora, S. M., & Chirife, J. (1990). Water activity of galactose solutions. Journal Food Science, 55, 1174–1176.

    Article  CAS  Google Scholar 

  • Nelder, J. A., & Mead, R. (1965). Downhill simplex method in multidimensions. Computer Journal, 7, 308–315.

    Google Scholar 

  • Ninni, L., Camargo, M. S., & Meirelles, A. J. A. (1999). Water activity in polyethylene glycol aqueous solutions. Termochimica Acta, 328, 169–176.

    Article  CAS  Google Scholar 

  • Ninni, L., Camargo, M. S., & Meirelles, A. J. A. (2000). Water activity in polyol systems. Jounal Chemical Engineering Data, 45, 654–660.

    Article  CAS  Google Scholar 

  • Norrish, R. S. (1966). An eqution for the activity coefficients and equilibrium relative humidities of water in confectionery syrups. Journal Food Technology, 1, 25–39.

    Article  CAS  Google Scholar 

  • Peng, C., Chow, A. H. L., & Chan, C. K. (2001). Hygroscopic study of glucose, citric acid, and sorbitol using an electrodynamic balance: Comparison with UNIFAC predictions. Aerosol Science and Technology, 35, 753–758.

    Article  CAS  Google Scholar 

  • Press, W. F., Flannery, P., & Vetterling, W. T. (1986). Numerical recipes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rahman, S. (1995). Food properties handbook. Boca Raton, FL: CRC.

    Google Scholar 

  • Ross, K. D. (1975). Estimation of water activity in intermediate moisture foods. Food Technology, 29(3), 26.

    CAS  Google Scholar 

  • Scatchard, G., Hamer, W. J., & Wood, E. (1938). Isotonic solutions. I. The chemical potential of water in aqueous solutions of sodium chloride, potassium chloride, sulphuric acid, sucrose, urea and glycerol at 25°C. Journal American Chemical Society, 60, 3061–3070.

    Article  CAS  Google Scholar 

  • Sereno, A. M., Hubinger, M. D., Comesaña, J. F., & Correa, A. (2001). Predicition of water activity of osmotic solutions. Journal Food Engineering, 49, 103–114.

    Article  Google Scholar 

  • Sloan, A. E., & Labuza, T. P. (1976). Prediction of water activity lowering ability of food humectants at high aw. Journal Food Science, 41, 532–535.

    Article  CAS  Google Scholar 

  • Teng, T. T., & Lenzi, F. (1974). Water activity data representation of aqueous solutions at 25°C. Canadian Journal of Chemical Engineering, 52, 387–391.

    Article  CAS  Google Scholar 

  • Zamora, M. C., Chirife, J., & Roldán, D. (2006). On the nature of the relationship between water activity and % moisture in honey. Food Control, 17, 642–647.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Agencia Nacional de Promoción Científica y Tecnológica, PICT (2005) no. 31951.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María C. Zamora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeza, R., Pérez, A., Sánchez, V. et al. Evaluation of Norrish’s Equation for Correlating the Water Activity of Highly Concentrated Solutions of Sugars, Polyols, and Polyethylene Glycols. Food Bioprocess Technol 3, 87–92 (2010). https://doi.org/10.1007/s11947-007-0052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-007-0052-8

Keywords

Navigation