Skip to main content
Log in

Skim Milk Whey Cryoconcentration and Impact on the Composition of the Concentrated and Ice Fractions

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The present work is a continuation of our previous study on the cryoconcentration of whole milk whey. The aim of the present work was to study a cryoconcentration procedure of skim milk whey and to compare the results with those obtained using whole milk whey. In the present study, skim whey was cryoconcentrated at four stages. It was found that by increasing the cryoconcentration stage, total dry matter content of the concentrated fraction increased, while it decreased in the ice fraction only until the third stage. Total dry matter content in the concentrated fraction reached an average value of 35% (w/v) at the fourth stage. The ratio of total protein to total dry matter remained constant in both fractions independently of the cryoconcentration stage. Results showed that the fat matter is an important factor for protein and lactose distribution between the concentrated and the ice fractions. Mathematical equations were developed to help the optimization of the process. Results showed that three cryoconcentration stages are optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aider, M., de Halleux, D., & Akbache, A. (2007). Whey cryoconcentration and impact on its composition. Journal of Food Engineering, 82(10), 92–102.

    Article  CAS  Google Scholar 

  • Atwood, G.-R. (1973). Studies in melt crystallization. In E. S. Perry, & C. J. Van Oss (Eds.) Separation and purification methods (pp. 297–369). New York: Marcel Dekker.

    Google Scholar 

  • Bae, S.-K., Miyawaki, O., & Arai, S. (1994). Control of freezing front structure and its effect on the concentration efficiency in progressive freeze-concentration. Cryobiology and Cryotechnology, 40, 29–32.

    Google Scholar 

  • Bailey, J.-M. (1973). Specificity of sugar-phospholipid interactions. Archives of Biochemistry and Biophysics, 168, 586–596.

    Article  Google Scholar 

  • Bayindirli, L., Ozilgen, M., & Ungan, S. (1993). Mathematical analysis of freeze concentration of apple juice. Journal of Food Engineering, 19(1), 95–107.

    Article  Google Scholar 

  • Beier, N., Sego, D., Donahue, R., & Biggar, K. (2007). Laboratory investigation on freeze separation of saline mine waste water. Cold Regions Science and Technology, 48(3), 239–247.

    Article  Google Scholar 

  • Bhatnagar, B.-S., Cardon, S., Pikal, M.-J., & Bogner, R.-H. (2005). Reliable determination of freeze-concentration using DSC. Thermochimica Acta, 425(1–2), 149–163.

    Article  CAS  Google Scholar 

  • Braddock, R.-J., & Marcy, J.-E. (1985). Freeze concentration of pineapple juice. Journal of Food Science, 50, 1636–1639.

    Article  CAS  Google Scholar 

  • Brisson, G., Britten, M., & Pouliot, Y. (2007). Heat-induced aggregation of bovine lactoferrin at neutral pH: Effect of iron saturation. International Dairy Journal, 17(6), 617–624.

    Article  CAS  Google Scholar 

  • Chang, Y.-H., & Hartel, R.-W. (1997). Flow properties of freeze-concentrated skim milk. Journal of Food Engineering, 31(3), 375–386.

    Article  Google Scholar 

  • Chen, P., Chen, X.-D., & Free, K.-W. (1998). Solute inclusion in ice formed from sucrose solutions on a sub-cooled surface-an experimental study. Journal of Food Engineering, 38(1), 1–13.

    Article  CAS  Google Scholar 

  • Chen, P., Chen, X.-D., & Free, K.-W. (1999). An experimental study on the spatial uniformity of solute inclusion in ice formed from falling film flows on a sub-cooled surface. Journal of Food Engineering, 39(1), 101–105.

    Article  CAS  Google Scholar 

  • Deshpande, S.-S., Bolin, H.-R., & Salunkhe, D.-K. (1982). Freeze concentration of fruit juices. Food Technology, 5, 68–82.

    Google Scholar 

  • Euston, S.-R., & Hirst, R.- L. (1999). Comparison of the concentration-dependent emulsifying properties of protein products containing aggregated and non-aggregated milk protein. International Dairy Journal, 9(10), 693–701.

    Article  CAS  Google Scholar 

  • Fetisov, E.-A., & Chagarovsky, A.-P. (1991). Membrane and molecular sieving methods for milk products (p. 272). Moscow: Agropromizdat.

    Google Scholar 

  • Gilbert, S.-W. (1991). Melt crystallization: Process analysis and optimization. AICHE Journal, 37, 1205–1218.

    Article  CAS  Google Scholar 

  • Grishine, M.-A., & Karpovich, A.-A. (1991). In: Complex treatment of milk and milk industry by-products. , Kiev, 192 pp.

  • Habib, B., & Farid, M. (2007a). Freeze concentration of milk and saline solutions in a liquid solid fluidized bed. Part II. Modelling of ice removal. Chemical Engineering and Processing (DOI 10.1016/j.cep.2006.11.004).

  • Habib, B., & Farid, M. (2007b). Freeze concentration of milk and saline solutions in a liquid solid fluidized bed. Part I. Experimental. Chemical Engineering and Processing (DOI 10.1016/j.cep.2006.11.008).

  • Hartel, R.-W., & Espinel, L.-A. (1993). Freeze concentration of skim milk. Journal of Food Engineering, 20(2), 101–120.

    Article  Google Scholar 

  • Holt, C., McPhail, D., & Nevison, I. (1999). Apparent chemical composition of nine commercial or semicommercial whey protein concentrates, isolates or fractions. International Journal of Food Science and Technology, 34, 543–556.

    Article  CAS  Google Scholar 

  • Huige, N.-J.-J., & Thijssen, H.-A.-C (1972). Production of large crystals by continuous ripening in a stirred tank. Journal of Crystal Growth, 13/14, 483–487.

    Article  Google Scholar 

  • Klimczak, I., Malecka, M., Szlachta, M., & Gliszczynska-Swiglo, A. (2007). Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. Journal of Food Composition and Analysis, 20(3–4), 313–322.

    Article  CAS  Google Scholar 

  • Krus, G.-N., Kuleshova, I.-M., & Dunchenko, N.-I. (1992). Cheese technology and other milk products p. 319. Moscow: Kolos.

    Google Scholar 

  • Lefevre, P.-G., Habich, K.-I., Hess, H.-S., & Hudson, M.-R. (1964). Phospholid-sugar complexes in relation to cell membrane monosaccharide transport. Science, 143, 955–957.

    Article  CAS  Google Scholar 

  • Leman, J., Haque, Z., & Kinsella, J.-E. (1988). Creaming stability of fluid emulsions containing different milk protein preparations. Milchwissenschaft, 43, 286–289.

    Google Scholar 

  • Liu, L., Miyawaki, O., & Nakamur, K. (1997). Progressive freeze-concentration of model liquid food. Food Science and Technology International, 3, 348–352.

    Google Scholar 

  • Miyawaki, O., Liu, L., Shirai, Y., Sakashita, S., & Kagitani, K. (2005). Tubular ice system for scale-up of progressive freeze-concentration. Journal of Food Engineering, 69(1), 107 453 113.

    Article  Google Scholar 

  • Olowofoyeku, A.-K., Gil, D., & Krame, A. (1980). Freeze concentration of apple juice by rotational unidirectional cooling. International Journal of Refrigeration, 3(2), 93–97.

    Article  Google Scholar 

  • Park, C.-R. (1961) In A. Kleinzeller, & A. Kotyk (Eds.) Membrane transport and metabolism pp. 453–454. New York: Academic.

    Google Scholar 

  • Pouliot, Y., Wijers, M.-C., Gauthier, S.-F., & Nadeau, L. (1999). Fractionation of whey protein hydrolysates using charged UF/NF membranes. Journal of Membrane Science, 158(1–2), 105–114.

    Article  CAS  Google Scholar 

  • Ramos, F. A., Delgado, J.-L., Bautista, E., Morales, A.-L., & Duque, C. (2005). Changes in volatiles with the application of progressive freeze-concentration to Andes berry (Rubusglaucus Benth). Journal of Food Engineering, 69(3), 291–297.

    Article  Google Scholar 

  • Rane, M.-V., & Jabade, S.-K. (2005). Freeze concentration of sugarcane juice in a jaggery making process. Applied Thermal Engineering, 25(14–15), 2122–2137.

    Article  CAS  Google Scholar 

  • Roufik, S., Paquin, P., & Britten, M. (2005). Use of high-performance size exclusion chromatography to characterize protein aggregation in commercial whey protein concentrates. International Dairy Journal, 15(3), 231–241.

    Article  CAS  Google Scholar 

  • Singh, H., & Newstead, D.-F. (1992). Aspects of proteins in milk powder manufacture. In P. F. Fox (Ed.) Advanced dairy chemistry, vol. 1, proteins (pp. 735–765). London: Elsevier.

    Google Scholar 

  • Zhang, Z., & Hartel, R.-W. (1996). A multilayer freezer for freeze concentration of liquid milk. Journal of Food Engineering, 29(1), 23–38.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Mr. Abderrazak Akbache for his assistance with the dosage of lactose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Aider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aider, M., de Halleux, D. & Melnikova, I. Skim Milk Whey Cryoconcentration and Impact on the Composition of the Concentrated and Ice Fractions. Food Bioprocess Technol 2, 80–88 (2009). https://doi.org/10.1007/s11947-007-0023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-007-0023-0

Keywords

Navigation