Skip to main content

Advertisement

Log in

Pressure- and Temperature-Dependent Density Change of Juices During Concentration

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Density of seven fruit juices (melon, plum, peach, black currants, cherry-plum, pear, and tangerine) have been measured at temperatures from 283 to 403 K and at pressures from 0.1 to 10 MPa for the concentrations of soluble solids from 10.7 to 70°Brix. Measurements were made with a hydrostatic weighing technique. The uncertainty of the density measurements was estimated to be less than 0.075%. The effect of temperature, pressure, and concentration on the fruit juice density was studied. The applicability and predictive capability of the various models for the density of fruit juices were studied. Various polynomials, power, exponential, logarithmic, and their combinations correlation models were used to represent the combined effect of temperature and concentration on the density. Models which represent the density of juice relative to pure water density were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguado, M. A., & Ibarz, A. (1988). Variació de la densidad de un zumo de manzana con la temperature y la concentración. Alimentacion, Equipos y Tecnologia, 3, 209–216.

    Google Scholar 

  • Alvarado, J. D., & Romero, C. H. (1989). Physical properties of fruits I–II. Density and viscosity of juices as functions of soluble solids content and temperature. Latin American Applied Research, 19, 15–21.

    Google Scholar 

  • Apelblat, A., & Manzurola, E. (2005). Volumetric and thermal properties of some aqueous electrolyte solutions. Part 5. Journal of Molecular Liquids, 118, 77–88.

    Article  CAS  Google Scholar 

  • Assael, M. J., Dymond, J. H., & Exadaktilou, D. (1994). An improved representation for n-alkane liquid densities. International Journal of Thermophysics, 15, 155–164.

    Article  CAS  Google Scholar 

  • Balint, A. (2001). Prediction of physical properties of foods for unit operations. Periodica Polytechnica Ser. Chemical Engineering, 45, 35–40.

    Google Scholar 

  • Bayindirli, L. (1992). Mathematical analysis of variation of density and viscosity of apple juice with temperature and concentration. Journal of Food Processing & Preservation, 16, 23–28.

    Article  Google Scholar 

  • Bayindirli, L. (1993). Density and viscosity of grape juice as a function of concentration and temperature. Journal of Food Processing & Preservation, 17, 147–151.

    Article  Google Scholar 

  • Bayindirli, L., & Özsan, O. (1992). Modeling of thermophysical properties of sourchery juice. Gida, 17, 405–407.

    Google Scholar 

  • Bayindirli, L., Sahin, S., & Artik, N. (1994). The effect of clarification methods on pomegranate juice quality. Fruit Processing, 4, 267–270.

    Google Scholar 

  • Cepeda, E., & Villarán, M. C. (1999). Density and viscosity of Malus floribunda juice as a function of concentration and temperature. Journal of Food Engineering, 41, 103–107.

    Article  Google Scholar 

  • Chen, C. S. (1993). Physical and rheological properties of juices. In S. Nagy, C. S. Chen, & Ph. E. Shaw (Eds.) Fruit juice processing technology. Auburndale Florida: Agscience, Inc.

    Google Scholar 

  • Chen, C.-T. A., & Millero, F. J. (1981). Equations of state for sodium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate aqueous solutions at high pressures. Journal of Chemical Engineering Data, 26, 270–274.

    Article  CAS  Google Scholar 

  • Choi, I., & Okos, M. R. (1983). The thermal properties of liquid foods. Paper no 83–6516. Chicago, IL: Winter meeting ASAE.

    Google Scholar 

  • Choi, Y., & Okos, M. (1986a). Effect of temperature and composition on the thermal properties of foods. In M. Le Maguer, & P. Jelen (Eds.) Food engineering and process applications, vol. 1. transport phenomena (pp. 93–101). New York: Elsevier Applied Science Publications.

    Google Scholar 

  • Choi, Y., & Okos, M. (1986b). Thermal properties of liquid foods-Review. In M. R. Okos (Ed.) Physical and chemical properties of food (pp. 35–77). New York: ASAE.

    Google Scholar 

  • Coleman, H. W., & Steele, W. G. (1989). Experimentation and uncertainty analysis for engineers. New York: Wiley & Sons.

    Google Scholar 

  • Constenla, D. T., Lozano, J. E., & Crapiste, G. H. (1989). Thermophysical properties clarified apple juice as a function of concentration and temperature. Journal of Food Science, 54, 663–668.

    Article  Google Scholar 

  • Correla, R. J., & Kestin, J. (1981). Viscosity and density of aqueous sodium sulfate and potassium sulfate solutions in the temperature range 20–90°C and the pressure range 0–30 MPa. Journal of Chemical Engineering Data, 26, 43–47.

    Article  Google Scholar 

  • Crandall, P. G., Chen, C. S., & Carter, R. D. (1982). Models for predicting viscosity of orange juice concentrate. Food Technology, 36, 245–252.

    Google Scholar 

  • Debye, P., & Hückel, H. (1924). Bemerkungen zu einem satze über die kataphoretische wanderungsgeschwindigkeit suspendierter teilchen. Zeitschrift für Physik, 25, 49–57.

    Google Scholar 

  • Deliza, R., Rosenthal, A., Abadio, F. B. D., Silva, C. H. O., & Castillo, C. (2005). Application of high pressure technology in the fruit juice processing: benefits perceived by consumers. Journal of Food Engineering, 67, 241–246.

    Article  Google Scholar 

  • Desrumaux, A., & Marcand, J. (2002). Formation of sunflower oil emulsions stabilized by whey proteins with high pressure homogenization (up to 350 MPa): effect of pressure on emulsion characteristics. International Journal of Food Science & Technology, 37, 263–269.

    Article  CAS  Google Scholar 

  • Dickerson, R. W. (1968). Thermal properties of foods. In D. K. Tressler, W. B. Van Arsdel, & M. R. Copley (Eds.) The freezing preservation of food. Westport, CT: AVI Publishing .

    Google Scholar 

  • Dymond, J. H., & Malhotra, R. (1987). Densities of n-alkanes and their mixtures at elevated pressures. International Journal of Thermophysics, 8, 541–555.

    Article  CAS  Google Scholar 

  • Farkas, D. F., & Hoover, D. G. (2000). High pressure processing. Journal of Food Science Supplementary, 65, 47–64.

    Google Scholar 

  • Farr, D. (1990). High pressure technology in the food industry. Trends in Food Science & Technology, pp 14–16.

  • Geller, V. Z., Pugach, A. K., & Mkhitaryan, G. G. (1992). Density and effective viscosity of apple juice at various concentrations. Pishevaya Promyshlennost, 1, 45–56.

    Google Scholar 

  • Gochiyaev, B. R. (1964). Determination of the viscosity and density of apple juice. Izvestiya Vysshikh Uchebnykh Zavedenii, seriya Pishevoi Tekhnologii, 4, 93–95.

    Google Scholar 

  • Gratáo, A. C. A., Júnior, V. S., Polizelli, M. A., & Telis-Romero, J. (2005). Thermal properties of passion fruit juice as affected by temperature and water content. Journal of Food Process Engineering, 27, 413–431.

    Article  Google Scholar 

  • Gut, J. A. W., Pinto, J. M., Gabas, A. L., & Telis-Romero, J. (2005). Continuous pasteurization of egg yolk: Thermophysical properties and process simulation. Journal of Food Process Engineering, 28, 181–203.

    Article  Google Scholar 

  • Horvath, A. L. (1985). Handbook of aqueous electrolyte solutions: Physical properties, estimation methods and correlation methods. Ellis Harwood: West Sussex, England.

    Google Scholar 

  • Ibarz, A., & Miguelsanz, R. (1989). Variation with temperature and soluble solids concentration of the density of a depectinised and clarified pear juices. Journal of Food Engineering, 10, 319–323.

    Article  Google Scholar 

  • International Organization of Standardization (IOS) 4787 (1994). Laboratory glassware-Volumetric glassware-Methods for use and testing capacity. Geneve: IOS.

    Google Scholar 

  • Isono, T. (1984). Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Journal of Chemical Engineering Data, 29, 45–52.

    Article  CAS  Google Scholar 

  • Kertesz, Z. I. (1935). The determination of glucuronic and galacturonic acids by Bertrand’s method. The Journal of Biological Chemistry, 66, 127–129.

    Google Scholar 

  • Lau, A. K., March, A. C., Lo, K. V., & Cumming, D. B. (1992). Physical properties of celery juice. Canadian Agricultural Engineering, 34, 105–110.

    Google Scholar 

  • Lewis, M. J. (1987). Physical properties of foods and food processing systems. England and VCH Verlagsgesellschaft, mbH, FRG: Ellis Horwood Ltd.

    Google Scholar 

  • Magerramov, M. A. (2006). Density of the concentrates of peach and pomegranate juices at elevated state parameters. Journal of Engineering Physics & Thermophysics, 79, 811–816.

    Article  Google Scholar 

  • Manohar, B., Ramakrishna, P., & Udayasankar, K. (1991). Some physical properties of tamarind (Tamarindus indica L.) juice concentrates. Journal of Food Engineering, 13, 241–258.

    Article  Google Scholar 

  • Moiseev, A. M. (1962). Variation of the density and sugar contains in apple juice at various concentrations. Izvestiya Vysshikh Uchebnykh Zavedenii, seriya Pishevoi Tekhnologii, 6, 66–67.

    Google Scholar 

  • Moresi, M., & Spinosi, M. (1980). Engineering factors in the production of concentrated fruit juices. 1. Fluid physical properties of orange juices. Journal of Food Technology, 15, 265–276.

    Google Scholar 

  • Moresi, M., & Spinosi, M. (1984). Engineering factors in the production of concentrated fruit juices. II. Fluid physical properties of grape juices. Journal of Food Technology, 19, 519–533.

    Google Scholar 

  • Novikova, S. I. (1974). Thermal expansion of solids. Moscow: Nauka.

    Google Scholar 

  • Novotný, P., & Söhnel, O. (1988). Densities of binary aqueous solutions of 306 inorganic substances. Journal of Chemical and Engineering Data, 33, 49–55.

    Article  Google Scholar 

  • Peacock, S. (1995). Prediction physical properties of factory juices and syrups. International Sugar Journal, 97, 571–577.

    CAS  Google Scholar 

  • Phang, S., & Stokes, R. H. (1980). Density, viscosity, conductance, and transference number of concentrated aqueous magnesium chloride at 25°C. Journal of Solution Chemistry, 9, 497–505.

    CAS  Google Scholar 

  • Phipps, L. W. (1969). The interrelationship of the viscosity, fat content and temperature of cream between 40°C and 80°C. Journal of Dairy Research, 36, 417–426.

    Article  Google Scholar 

  • Polley, S. L., Snyder, O. P., & Kotur, P. (1980). A compilation of thermal properties of foods. Food Technology, 34, 76–108.

    Google Scholar 

  • Ramos, A. M., & Ibarz, A. (1998). Density of juice and fruit puree as a function of soluble solids content and temperature. Journal of Food Engineering, 35, 57–63.

    Article  Google Scholar 

  • Rao, M. A. (1986). Viscoelastic properties of fluid and semi solid foods. Physical and chemical properties of food (pp. 14–34). New York: ASAE.

    Google Scholar 

  • Rao, M. A. (1999). Rheology of fluid and semisolid foods. Principles and Applications. Gaithersburg, Maryland: Aspen Publishers, Inc.

    Google Scholar 

  • Redlich, O., & Mayer, D. M. (1964). The molal volumes of electrolytes. Chemical Review, 64, 221–227.

    Article  CAS  Google Scholar 

  • Rha, C. (1975). Theory, determination and control of physical properties of food materials. Dordrecht, Holland: D. Riedel Pub.

    Google Scholar 

  • Rohman, N., Dass, N. N., & Mahiuddin, S. (2002). Isentropic compressibility, effective pressure, classical sound absorption and shear relaxation time of aqueous lithium bromide, sodium bromide, and potassium bromide solutions. Journal of Molecular Liquids, 100, 265–290.

    Article  CAS  Google Scholar 

  • Saravacos, G. D., & Maroulis, Z. B. (2002). Transport properties of foods. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Söhnel, O., & Novotny, P. (1985). Density of aqueous solutions of inorganic substances. New York: Elsevier.

    Google Scholar 

  • Sweat, V. E. (1986). Thermal properties of foods. In M. A. Rao, & S. S. H. Rizvi (Eds.) Engineering properties of foods, Chapter 1 (pp. 49–87). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Tadini, C. C., Telis, V. R. N., & Telis-Romero, J. (2005). Influence of temperature and concentration on thermophysical properties of caja juice. Eurotherm Seminar 77-Heat and Mass Transfer in Food Processing, Parma, Italy.

  • Telis-Romero, J., Telis, V. R. N., Gabas, A. L., & Yamashita, F. (1998). Thermophysical properties of Brazilian orange juice as affected by temperature and water content. Journal of Food Engineering, 38, 27–40.

    Article  Google Scholar 

  • Voitko, A. M., Kovaleva, R. I., & Tsaplin, V. A. (1967). Study of the some physical characteristics of concentrated grape juices. Pishevaya Promyshlennost, 1, 61–74.

    Google Scholar 

  • Wagner, W., & Pruß A. (2002). The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical & Chemical Reference Data, 31, 387–535.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Abdulagatov I.M. and Abdulagatov A.I. thank the Physical and Chemical Properties Division at the National Institute of Standards and Technology for the opportunity to work as guest researchers at NIST during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magerramov, M.A., Abdulagatov, A.I., Azizov, N.D. et al. Pressure- and Temperature-Dependent Density Change of Juices During Concentration. Food Bioprocess Technol 1, 254–269 (2008). https://doi.org/10.1007/s11947-007-0022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-007-0022-1

Keywords

Navigation