Advertisement

Food and Bioprocess Technology

, Volume 1, Issue 2, pp 187–195 | Cite as

Thermal Inactivation Kinetics of Peroxidase in Coriander Leaves

  • S. G. Rudra
  • U. S. ShivhareEmail author
  • S. Basu
  • B. C. Sarkar
Article

Abstract

Design of efficient blanching treatments requires knowledge of critical factors such as enzyme inactivation kinetic parameters and relative proportions of heat-labile and heat-resistant fractions, which is unique in each vegetable. Thermal inactivation curves for peroxidase in coriander leaves were determined in the temperature range of 70 to 100 °C and in steam. The isothermal data were statistically treated using both linear and nonlinear regression. Applicability of various enzyme inactivation models available in the literature was critically evaluated. The two-fraction first-order model was found to be the best model to describe the peroxidase inactivation kinetics in coriander leaves (R 2 > 0.97). Kinetic parameters were determined for heat-labile and heat-resistant isoenzyme fractions. The temperature dependence of the rate parameters in the present study did not follow the Arrhenius relationship.

Keywords

Coriander Peroxidase Heat treatment Blanching Modeling 

Nomenclature

α1, α2

ratio of specific activities E 1/E and E 2/E

α

activity fraction of the thermal labile isozyme group

αI

specific activity of each component

A(t)/A

enzyme activity at time t

AL, AS

enzyme activity for heat labile and resistant fraction

Ao

initial enzyme activity at t = 0

Ar

activity of the resistant enzyme fraction

CL

concentration of heat labile isozyme

Coi

enzyme activity per unit volume of the ith component at time 0

CR

concentration of heat resistant isozyme

E, E1 and E2

specific activities of enzymes and isoenzymes

E

homogenous native enzyme population

Ea

activation energy (kJ/mol)

K

reaction rate constant (min−1)

k1, k2

first-order inactivation rate coefficients (min−1)

kL, kR

rate constants for thermal inactivation of heat-labile and heat-resistant isozymes (min−1)

KL, KR

reaction rate constant for the heat-labile and heat-resistant isozymes with the substrate (min−1)

ko

pre-exponential factor

M

number of components

R

ratio of C o2 to C o1

R

universal gas constant (8.314 J mol−1 K−1)

R2

coefficient of correlation

SE

standard error

T

absolute temperature (K)

Uo

ΔAbsorbace per minute of native enzyme

Ut

ΔAbsorbace per minute after heat treatment for time ‘t

References

  1. Adams, J. B. (1991). Review: Enzyme inactivation during heat processing of food stuffs. International Journal of Food Science & Technology, 26, 1–20.CrossRefGoogle Scholar
  2. Adams, J. B. (1997). Regeneration and kinetics of peroxidase inactivation. Food Chemistry, 60, 201–206.CrossRefGoogle Scholar
  3. Anthon, G. E., Sekine, Y., Watanabe, N., & Barrett, D. M. (2002). Thermal inactivation of pectin methylesterase, polygalacturonase, and peroxidase in tomato juice. Journal of Agricultural and Food Chemistry, 50, 6153–6159.CrossRefGoogle Scholar
  4. Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 133–140.Google Scholar
  5. Blancas, M. E. E., Chandia, V. E., & Zevallos, L. C. (2002). Thermal inactivation kinetics of peroxidase and lipoxygenase from broccoli, green asparagus and carrots. Journal of Food Science, 67, 146–154.CrossRefGoogle Scholar
  6. Chen, C. S., & Wu M. C. (1998). Kinetic models for thermal inactivation of multiple pectinestrases in citrus juices. Journal of Food Science, 63, 747–750.CrossRefGoogle Scholar
  7. Cleland, W. W. (1975). Partition analysis and concept of net rate constants as tools of enzyme kinetics. Biochemistry, 14, 3220.CrossRefGoogle Scholar
  8. Fujikawa H, & Itoh T. (1996). Characteristics of a multicomponent first-order model for thermal inactivation of microorganisms and enzymes. International Journal of Food Microbiology, 31, 263–271.CrossRefGoogle Scholar
  9. Ganthavorn, C., Nagel, C. W., & Powers, J. R. (1991). Thermal inactivation of asparagus lipoxygenase and peroxidase. Journal of Food Science, 56, 47–49, 79.CrossRefGoogle Scholar
  10. Haas, J., Behsnilian, D., & Schubert, H. (1996). Determination of heat resistance of bacterial spores by the capillary tube method. I. Calculation of two borderline cases describing quasi-isothermal conditions. Lebensm-Wiss-u-Technol, 29(3), 197–202.CrossRefGoogle Scholar
  11. Hemeda HM, Klein BP. (1991). Inactivation and regeneration of peroxidase activity in vegetable extracts treated with anti-oxidants. Journal of Food Science, 56, 68–71.CrossRefGoogle Scholar
  12. Hendrickx, M., Saraiva, J., Lyssens, J., Oliviera, J., & Tobback, P. (1992). The influence of water activity on thermal stability of horse radish peroxidase. International Journal of Food Science & Technology, 27, 33–40.CrossRefGoogle Scholar
  13. Henley, J. P., & Sadana, A. (1985). Categorization of enzyme deactivation using a series-type mechanism. Enzyme and Microbial Technology, 7, 50–60.CrossRefGoogle Scholar
  14. Kapur, L. D. (2001). Handbook of ayurvedic medicinal plants (p. 137). Florida: CRC Press LLC.Google Scholar
  15. Ling, A. C., & Lund, D. B. (1978). Determining kinetic parameters for thermal inactivation of heat resistant and heat labile isoenzymes from thermal destruction curves. Journal of Food Science, 43, 1307–1310.CrossRefGoogle Scholar
  16. Lopez, P., & Burgos, J. (1995). Peroxidase stability and reactivation after heat treatment and manothermosonication. Journal of Food Science, 60, 451–455, 482.CrossRefGoogle Scholar
  17. Lourencüo, E. J., de Souza Leão, J., & Neves, V. A. (1990). Heat inactivation and kinetics of polyphenoloxidase from palmito (Euterpe edulis). Journal of the Science of Food and Agriculture, 52, 249–259.CrossRefGoogle Scholar
  18. Ludikhuyze, L., Loy, A. V., Indrawati, Smout, C., & Hendrickx, M. (2003). Effects of combined pressure temperature on enzymes related to quality of fruits and vegetables: From kinetic information to process engineering aspects. Critical Reviews in Food Science and Nutrition, 43, 527–586.CrossRefGoogle Scholar
  19. Ludikhuyze, L. R., Van den Broeck, I., Weemaes, C. A., Herremans, C. H., Van Impe, J. F., Hendrickx, M. E., et al. (1997). Kinetics for isobaric-isothermal inactivation of Bacillus subtilis R-amylase. Biotechnology Progress, 13, 532–538.CrossRefGoogle Scholar
  20. Mc. Guinness, E. T., & Waino, W. W. (1962). Cytochrome c oxidase. Journal of Biological Chemistry, 237(10), 3273–3278.Google Scholar
  21. Polakovič, M., & Vrábel, P. (1996). Analysis of the mechanism and kinetics of thermal inactivation of enzymes: Critical assessment. Process Biochemistry, 3, 787–800.CrossRefGoogle Scholar
  22. Ramesh, M. N., Wolf, W., Tevini, D., & Bognar, A. (2002). Microwave blanching of vegetables. Journal of Food Science, 67, 390–398.CrossRefGoogle Scholar
  23. Rizvi, A. F., & Tong, C. H. (1997). Fractional conversion for determining texture degradation kinetics of vegetables. Journal of Food Science, 62, 1–7.CrossRefGoogle Scholar
  24. Robert, C. M., Cadet, F. R., Rouch, C. C., Pabion, M., & Richard-Forget, F. (1995). Kinetic study of the irreversible thermal deacti-vation of palmito (Acanthophoenix rubra) polyphenol oxidase and effect of pH. Journal of Agricultural and Food Chemistry, 43, 1143–1150.CrossRefGoogle Scholar
  25. Ross, T. (1996). Indices for performance and evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81, 501–508.Google Scholar
  26. Saraiva, J. (1994). Effect of environment aspects on enzyme heat stability and its application in the development of time temperature integrators. PhD thesis, Escola Superior de Biotecnologia, Universidade Católica Porteguesa, Portugal.Google Scholar
  27. Servant, I., Gibert, H., & Gilot, B. (1986a). Comportement thermique des peroxidases de legumes. II. Modelisation de la cinétique de désactivation et de réactivation. Journal of Food Engineering, 5, 301–310.CrossRefGoogle Scholar
  28. Servant, I., Gilot, B., & Gibert, H. (1986b). Comportement thermique des peroxidases de légumes. I. Extude experimentale. Journal of Food Engineering, 5, 287–300.CrossRefGoogle Scholar
  29. Seyderhelm, I., Boguslawski, S., Michaelis, G., & Knorr, D. (1996). Pressure induced inactivation of selected food enzymes. Journal of Food Science, 61, 308–310.CrossRefGoogle Scholar
  30. Vámos Vigyázó, L. (1981). Polyphenol oxidase and peroxidase in fruits and vegetables. Critical Reviews in Food Science and Nutrition, 15(1), 49–127.CrossRefGoogle Scholar
  31. Weemaes, C. A., Ludikhuyze, L. R., Van den Broeck, I., & Hendrickx, M. (1998). Kinetics of combined pressure-temperature inactivation of avocado polyphenol oxidase. Biotechnology and Bioengineering, 60(3), 292–300.CrossRefGoogle Scholar
  32. Yamauchi, N., Funamoto, Y., & Shigyo, M. (2004). Peroxidase-mediated chlorophyll degradation in horticultural crops. Phytochem Rev, 3, 221–228.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • S. G. Rudra
    • 1
  • U. S. Shivhare
    • 2
    Email author
  • S. Basu
    • 2
  • B. C. Sarkar
    • 3
  1. 1.Department of Food and Nutrition, Institute of Home EconomicsDelhi UniversityNew DelhiIndia
  2. 2.Department of Chemical Engineering & TechnologyPanjab UniversityChandigarhIndia
  3. 3.Department of Food TechnologySant Longowal Institute of Engineering & TechnologyLongowalIndia

Personalised recommendations