Skip to main content

Repräsentativität von Subgruppen bei geschichteten Zufallsstichproben

Representativity of subgroups in stratified random samples

Zusammenfassung

Der Begriff „repräsentative Stichprobe“ findet sich in praktisch allen Berichten über Umfragen. Im Allgemeinen wird darunter vage verstanden, dass die Stichprobe ein verkleinertes Abbild der Grundgesamtheit sei. Eine wissenschaftliche Definition des Begriffes aber sollte alle wesentlichen Qualitätskriterien einer Stichprobenerhebung beinhalten. In diesem Aufsatz wird eine solche Definition diskutiert. Diese berücksichtigt neben theoretischen Aspekten des Stichprobendesigns wie Stichprobenverfahren und Schätzmethode auch die sogar in Populationserhebungen auftretenden praktischen Faktoren wie Antwortausfälle und Falschantworten. Ist dieses Stichprobensystem gegeben, dann bestimmt der gewählte Stichprobenumfang den Stichprobenfehler der Erhebung. Die Frage des für eine gewünschte Genauigkeit notwendigen Stichprobenumfangs wird diskutiert. Darauf aufbauend findet eine Auseinandersetzung mit der in der Praxis der Umfragen häufig auftretenden Fragestellung der bei geschichteten Zufallsstichproben benötigten Stichprobenumfänge in einzelnen Subgruppen statt. Diese sollen Repräsentativität in jeder einzelnen Subgruppe gewährleisten. Die Lösung dieses Problems liefert eine konvexe Minimierungsaufgabe mit unteren und oberen Schranken und linearen Ungleichungen als Nebenbedingungen. Ein numerisches Beispiel veranschaulicht ganz konkret die vorgeschlagene Vorgehensweise.

Abstract

The concept of a representative sample can be found in nearly every survey description. In general, this means that the sample is a miniature of the population. A scientific definition of the term should include all important aspects of a sample survey. In this paper such a definition is discussed. Besides the theoretical aspects of the sample design such as the sampling method and the estimation technique, it comprises practical aspects occurring also in population surveys such as nonresponse and untruthful answering. Given this sample design, the chosen sample number determines the survey’s sampling error. The question of the necessary sample number for a certain efficiency of the estimator is discussed. Based on that, the question on the sample numbers in subgroups of a stratified random sample, relevant in practice, is considered. These sample numbers have to allow for representativeness in each subgroup. The solution of this problem can be described by a convex minimization program under box constraints and linear inequality constraints. A numerical example illustrates the proposed procedure.

This is a preview of subscription content, access via your institution.

Literatur

  • ADM-Arbeitskreis Deutscher Markt- und Sozialforschungsinstitute e.V.; AG.MA Arbeitsgemeinschaft Media-Analyse e.V. (Hrsg) (1999) Stichproben-Verfahren in der Umfrageforschung: Eine Darstellung für die Praxis. Leske + Budrich, Opladen

  • Aschpurwis + Behrens GmbH (2001) Markt-, Media- und Regionalforschung 2001: BIK Regionen. http://www.bik-gmbh.de/texte/BIK-Regionen2000.pdf.Gesehen8.8.2013

  • Barcaroli G, Pagliuca D, Willighagen E (2013) R-Package SamplingStrata. www.r-project.org

  • Benedetti R, Espa G, Lafratta G (2008) A tree-based approach to forming strata in multipurpose business surveys. Surv Methodol 34:195–203

    Google Scholar 

  • Bethel JW (1989) Sample allocation in multivariate surveys. Surv Methodol 15:47–57

    Google Scholar 

  • Borg I, Gabler S (2002) Zustimmungsanteile und Mittelwerte von Likert-skalierten Items. Nachr - Zent Umfr Methoden Anal 50:7–25

    Google Scholar 

  • Bortz J, Döring N (1995) Forschungsmethoden und Evaluation, 2. Aufl. Springer, Berlin

    Book  Google Scholar 

  • Bosch V (2012) Repräsentativität von Stichproben. http://www.marktforschung.de/marktforschungdossier/maerz-2012/repraesentativitaet-von-stichproben.Gesehen8.8.2013

  • Chaudhuri A (2011) Randomized response and indirect questioning techniques in surveys. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  • Choudry H, Rao JNK, Hidiroglou M (2012) On sample allocation for efficient domain estimation. Surv Methodol 38:23–29

    Google Scholar 

  • De Meo M (2013) R-Package bethel. www.r-project.org

  • Gabler S (1996) Repräsentativität von Stichproben. In: Goebl H et al. (Hrsg) Kontaktlinguistik: Ein internationales Handbuch zeitgenössischer Forschung. De Gruyter, New York, S 733–737

    Google Scholar 

  • Gabler S, Quatember A (2012) Das Problem mit der Repräsentativität von Stichprobenerhebungen. In: Verband Schweizer Markt- und Sozialforschung. Jahrbuch 2012. vsms, Zürich, S 17–19

    Google Scholar 

  • Gabler S, Ganninger M, Münnich R (2012) Optimal allocation of the sample size to strata under box constraints. Metrika 75:151–161

    MathSciNet  Article  MATH  Google Scholar 

  • Groves RM, Fowler FJ Jr, Couper MP, Lepkowski JM, Singer E, Tourangeau R (2004) Survey methodology. Wiley, Hoboken

    MATH  Google Scholar 

  • Kreienbrock L (1989) Einführung in die Stichprobenverfahren. Oldenbourg, München

    Google Scholar 

  • Kruskal W, Mosteller F (1979a) Representative sampling. I. Non-scientific literature. Int Stat Rev 47:13–24

    Article  Google Scholar 

  • Kruskal W, Mosteller F (1979b) Representative sampling. II. Scientific literature, excluding statistics. Int Stat Rev 47:111–127

    Article  Google Scholar 

  • Kruskal W, Mosteller F (1979c) Representative sampling. III. The current statistical literature. Int Stat Rev 47:245–265

    Article  MATH  Google Scholar 

  • Kruskal W, Mosteller F (1980) Representative sampling. VI. The history of the concept in statistics, 1895–1939. Int Stat Rev 48:169–195

    MathSciNet  Article  MATH  Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2. Aufl. Wiley, Hoboken

    MATH  Google Scholar 

  • Lohr S (2010) Sampling: design and analysis, 2. Aufl. Brooks/Cole, Boston

    Google Scholar 

  • Münnich R (2008) Varianzschätzung in komplexen Erhebungen. Aust J Stat 37:319–334

    Google Scholar 

  • Quatember A (1996a) Das Problem mit dem Begriff Repräsentativität. Allg Stat Arch 80:236–241

    Google Scholar 

  • Quatember A (1996b) Das Quotenverfahren. Universitätsverlag Rudolf Trauner, Linz

    Google Scholar 

  • Särndal C-E, Lundström S (2006) Estimation in surveys with nonresponse. Wiley, Chichester

    Google Scholar 

  • Särndal C-F Swensson B, Wretman J (1992) Model assisted survey sampling. Springer, New York

    Book  MATH  Google Scholar 

  • Schnell R (1997) Nonresponse in Bevölkerungsumfragen: Ausmaß, Entwicklung und Ursachen. Leske + Budrich, Opladen

    Book  Google Scholar 

  • Squire P (1988) Why the 1936 literary digest poll failed. Public Opin Q 52:125–133

    Article  Google Scholar 

  • Von der Lippe P, Kladroba A (2002) Repräsentativität von Stichproben. Marketing ZFP 24:139–145

    Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich bei den Gutachtern und Herausgebern für ihre wertvollen Kommentare und Vorschläge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Gabler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gabler, S., Quatember, A. Repräsentativität von Subgruppen bei geschichteten Zufallsstichproben. AStA Wirtsch Sozialstat Arch 7, 105–119 (2013). https://doi.org/10.1007/s11943-013-0132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11943-013-0132-3

Schlüsselwörter

  • Stichprobenerhebung
  • Schwankungsbreite
  • Designeffekt
  • konvexe Minimierung

JEL Klassifikationen

  • C83

Keywords

  • Sample Survey
  • Band width
  • Design effect
  • Convex minimization