Skip to main content

Advertisement

Log in

Toxic Myopathies

  • Neuromuscular Disorders (C Fournier, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

The goal of this paper is to review the clinical, electrophysiologic, and histopathologic features of toxic myopathy related to prescribed medications, highlighting new understanding. This paper is organized by treatment class to allow providers to easily prioritize learning about the potential myotoxic side effects of the medications they prescribe most frequently. Pathogenesis of toxicity is also discussed.

Recent findings

Mild muscle-related symptoms are common among statin users, but rarely statins can cause weakness due to either a toxic necrotizing myopathy or an immune-mediated necrotizing myopathy (IMNM). The latter can be diagnosed with the aid of serum autoantibodies to 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMGCR) and uniquely requires immunotherapy for symptomatic control. We review recent data on the clinical spectrum of chloroquine and hydroxychloroquine myopathy. We also cover newer classes of medications that have been associated with a toxic myopathy, most notably immune checkpoint inhibitors (ICI) now used for the treatment of many cancers.

Summary

There are many medications that have the potential to induce muscle damage. Early recognition of a toxic myopathy is essential because stopping the use of the offending agent can lead to improvement of symptoms, or in the rare cases of statin-associated IMNM or ICI-associated myopathy, appropriate treatment can be initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading 

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Silva M, Matthews ML, Jarvis C, et al. Meta-analysis of drug-induced adverse events associated with intensive-dose statin therapy. Clin Ther. 2007;29(2):253–60. https://doi.org/10.1016/j.clinthera.2007.02.008.

    Article  CAS  PubMed  Google Scholar 

  2. SEARCH Collaborative Group, Link E, Parish S, et al. SLCO1B1 variants and statin-induced myopathy - a genomewide study. N Engl J Med. 2008;359(8):789–799. https://doi.org/10.1056/NEJMoa0801936.

  3. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA. 2003;289(13):1681–90. https://doi.org/10.1001/jama.289.13.1681.

    Article  CAS  PubMed  Google Scholar 

  4. Franc S, Dejager S, Bruckert E, Chauvenet M, Giral P, Turpin G. A comprehensive description of muscle symptoms associated with lipid-lowering drugs. Cardiovasc Drugs Ther. 2003;17(5–6):459–65. https://doi.org/10.1023/b:card.0000015861.26111.ab.

    Article  CAS  PubMed  Google Scholar 

  5. Pasternak RC, Smith SC Jr, Bairey-Merz CN, et al. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. Circulation. 2002;106(8):1024–8. https://doi.org/10.1161/01.cir.0000032466.44170.44.

    Article  PubMed  Google Scholar 

  6. Catapano AL. Statin-induced myotoxicity: pharmacokinetic differences among statins and the risk of rhabdomyolysis, with particular reference to pitavastatin. Curr Vasc Pharmacol. 2012;10(2):257–67. https://doi.org/10.2174/157016112799305021.

    Article  CAS  PubMed  Google Scholar 

  7. Taylor BA, Thompson PD. Statin-associated muscle disease: advances in diagnosis and management. Neurotherapeutics. 2018;15(4):1006–17. https://doi.org/10.1007/s13311-018-0670-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuncl RW. Agents and mechanisms of toxic myopathy. Curr Opin Neurol. 2009;22(5):506–15. https://doi.org/10.1097/WCO.0b013e32833045a0.

    Article  CAS  PubMed  Google Scholar 

  9. Hansen KE, Hildebrand JP, Ferguson EE, Stein JH. Outcomes in 45 patients with statin-associated myopathy. Arch Intern Med. 2005;165(22):2671–6. https://doi.org/10.1001/archinte.165.22.2671.

    Article  PubMed  Google Scholar 

  10. Meriggioli MN, Barboi AC, Rowin J, Cochran EJ. HMG-CoA reductase inhibitor myopathy: clinical, electrophysiological, and pathologic data in five patients. J Clin Neuromuscul Dis. 2001;2(3):129–34.

    Article  CAS  Google Scholar 

  11. de Almeida DF, Lissa TV, Melo AC Jr. Myotonic potentials in statin-induced rhabdomyolysis. Arq Neuropsiquiatr. 2008;66(4):891–3. https://doi.org/10.1590/s0004-282x2008000600024.

    Article  PubMed  Google Scholar 

  12. Floyd JS, Brody JA, Tiniakou E, et al. Absence of anti-HMG-CoA reductase autoantibodies in severe self-limited statin-related myopathy. Muscle Nerve. 2016;54(1):142–4. https://doi.org/10.1002/mus.25127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mammen AL, Pak K, Williams EK, et al. Rarity of anti-3-hydroxy-3-methylglutaryl-coenzyme a reductase antibodies in statin users, including those with self-limited musculoskeletal side effects. Arthritis Care Res (Hoboken). 2012;64(2):269–72. https://doi.org/10.1002/acr.20662.

    Article  CAS  Google Scholar 

  14. Mammen AL, Tiniakou E. Intravenous immune globulin for statin-triggered autoimmune myopathy. N Engl J Med. 2015;373(17):1680–2. https://doi.org/10.1056/NEJMc1506163.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Allenbach Y, Mammen AL, Benveniste O, et al. 224th ENMC International Workshop: clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14–16 October 2016. Neuromuscul Disord. 2018;28(1):87–99. https://doi.org/10.1016/j.nmd.2017.09.016.

    Article  PubMed  Google Scholar 

  16. McGrath ER, Doughty CT, Amato AA. Autoimmune myopathies: updates on evaluation and treatment. Neurotherapeutics. 2018;15(4):976–94. https://doi.org/10.1007/s13311-018-00676-2.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Alsheikh-Ali AA, Kuvin JT, Karas RH. Risk of adverse events with fibrates. Am J Cardiol. 2004;94(7):935–8. https://doi.org/10.1016/j.amjcard.2004.06.033.

    Article  CAS  PubMed  Google Scholar 

  18. Litin SC, Anderson CF. Nicotinic acid-associated myopathy: a report of three cases. Am J Med. 1989;86(4):481–3. https://doi.org/10.1016/0002-9343(89)90352-5.

    Article  CAS  PubMed  Google Scholar 

  19. Slim H, Thompson PD. Ezetimibe-related myopathy: a systematic review. J Clin Lipidol. 2008;2(5):328–34. https://doi.org/10.1016/j.jacl.2008.08.430.

    Article  PubMed  Google Scholar 

  20. Pierce LR, Wysowski DK, Gross TP. Myopathy and rhabdomyolysis associated with lovastatin-gemfibrozil combination therapy. JAMA. 1990;264(1):71–5. https://doi.org/10.1001/jama.1990.03450010075034.

    Article  CAS  PubMed  Google Scholar 

  21. Nissen SE, Stroes E, Dent-Acosta RE, et al. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA. 2016;315(15):1580–90. https://doi.org/10.1001/jama.2016.3608.

    Article  CAS  PubMed  Google Scholar 

  22. Tiniakou E, Rivera E, Mammen AL, Christopher‐Stine L. Use of proprotein convertase subtilisin/kexin type 9 inhibitors in statin-associated immune-mediated necrotizing myopathy: a case series. Arthritis Rheumatol 2019;71(10):1723–1726. https://doi.org/10.1002/art.40919.

  23. Kosmas CE, Muñoz Estrella A, Skavdis A, Peña Genao E, Martinez I, Guzman E. Inclisiran for the treatment of cardiovascular disease: a short review on the emerging data and therapeutic potential. Ther Clin Risk Manag. 2020;16:1031–7. https://doi.org/10.2147/TCRM.S230592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruzieh M, Moroi MK, Aboujamous NM, et al. Meta-analysis comparing the relative risk of adverse events for amiodarone versus placebo. Am J Cardiol. 2019;124(12):1889–93. https://doi.org/10.1016/j.amjcard.2019.09.008.

    Article  CAS  PubMed  Google Scholar 

  25. Pulipaka U, Lacomis D, Omalu B. Amiodarone-induced neuromyopathy: three cases and a review of the literature. J Clin Neuromuscul Dis. 2002;3(3):97–105. https://doi.org/10.1097/00131402-200203000-00001.

    Article  PubMed  Google Scholar 

  26. Alsheikh-Ali AA, Karas RH. Adverse events with concomitant amiodarone and statin therapy. Prev Cardiol. 2005;8(2):95–7. https://doi.org/10.1111/j.1520-037x.2005.4060.x.

    Article  CAS  PubMed  Google Scholar 

  27. Ledingham D, Cordato D. Focal myositis and contracture secondary to amiodarone extravasation from a peripheral cannula. BMJ Case Rep 2019;12(1):bcr-2018–227725. https://doi.org/10.1136/bcr-2018-227725.

  28. Venkayya RV, Poole RM, Pentz WH. Respiratory failure from procainamide-induced myopathy. Ann Intern Med. 1993;119(4):345–6. https://doi.org/10.7326/0003-4819-119-4-199308150-00026.

    Article  CAS  PubMed  Google Scholar 

  29. Lewis CA, Boheimer N, Rose P, Jackson G. Myopathy after short term administration of procainamide. Br Med J (Clin Res Ed). 1986;292(6520):593–4. https://doi.org/10.1136/bmj.292.6520.593.

    Article  CAS  Google Scholar 

  30. Fontiveros ES, Cumming WJ, Hudgson P. Procainamide-induced myositis. J Neurol Sci. 1980;45(1):143–7. https://doi.org/10.1016/s0022-510x(80)80016-5.

    Article  CAS  PubMed  Google Scholar 

  31. Teicher A, Rosenthal T, Kissin E, Sarova I. Labetalol-induced toxic myopathy. Br Med J (Clin Res Ed). 1981;282(6279):1824–5. https://doi.org/10.1136/bmj.282.6279.1824.

    Article  CAS  Google Scholar 

  32. Willis JK, Tilton AH, Harkin JC, Boineau FG. Reversible myopathy due to labetalol. Pediatr Neurol. 1990;6(4):275–6. https://doi.org/10.1016/0887-8994(90)90122-h.

    Article  CAS  PubMed  Google Scholar 

  33. Kim YJ, Kim HR, Jeon HJ, et al. Rhabdomyolysis in a patient taking nebivolol. Kidney Res Clin Pract. 2016;35(3):182–6. https://doi.org/10.1016/j.krcp.2015.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Notturno F, Uncini A. Association of rhabdomyolysis with nebivolol. Muscle Nerve. 2021;63(1):E1–2. https://doi.org/10.1002/mus.27078.

    Article  PubMed  Google Scholar 

  35. Arellano F, Krupp P. Muscular disorders associated with cyclosporin. Lancet. 1991;337(8746):915. https://doi.org/10.1016/0140-6736(91)90245-k.

    Article  CAS  PubMed  Google Scholar 

  36. Breil M, Chariot P. Muscle disorders associated with cyclosporine treatment. Muscle Nerve. 1999;22(12):1631–6. https://doi.org/10.1002/(sici)1097-4598(199912)22:12%3c1631::aid-mus3%3e3.0.co;2-v.

    Article  CAS  PubMed  Google Scholar 

  37. Kuncl RW, Duncan G, Watson D, Alderson K, Rogawski MA, Peper M. Colchicine myopathy and neuropathy. N Engl J Med. 1987;316(25):1562–8. https://doi.org/10.1056/NEJM198706183162502.

    Article  CAS  PubMed  Google Scholar 

  38. Rutkove SB, De Girolami U, Preston DC, et al. Myotonia in colchicine myoneuropathy. Muscle Nerve. 1996;19(7):870–5. https://doi.org/10.1002/(SICI)1097-4598(199607)19:7%3c870::AID-MUS9%3e3.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar 

  39. Tanios MA, El Gamal H, Epstein SK, Hassoun PM. Severe respiratory muscle weakness related to long-term colchicine therapy. Respir Care. 2004;49(2):189–91.

    PubMed  Google Scholar 

  40. Amato AA, Rusell JA. Toxic Myopathies. In: Amato AA, Rusell JA, editors. Neuromuscular disorders. 2nd ed. New York: McGraw Hill Companies Inc; 2016. p. 887–910.

    Google Scholar 

  41. Caglar K, Odabasi Z, Safali M, Yenicesu M, Vural A. Colchicine-induced myopathy with myotonia in a patient with chronic renal failure. Clin Neurol Neurosurg. 2003;105(4):274–6. https://doi.org/10.1016/s0303-8467(03)00030-1.

    Article  PubMed  Google Scholar 

  42. Wilbur K, Makowsky M. Colchicine myotoxicity: case reports and literature review. Pharmacotherapy. 2004;24(12):1784–92. https://doi.org/10.1592/phco.24.17.1784.52334.

    Article  PubMed  Google Scholar 

  43. Kwon OC, Hong S, Ghang B, Kim YG, Lee CK, Yoo B. Risk of colchicine-associated myopathy in gout: influence of concomitant use of statin. Am J Med. 2017;130(5):583–7. https://doi.org/10.1016/j.amjmed.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  44. Justiniano M, Dold S, Espinoza LR. Rapid onset of muscle weakness (rhabdomyolysis) associated with the combined use of simvastatin and colchicine. J Clin Rheumatol. 2007;13(5):266–8. https://doi.org/10.1097/RHU.0b013e318156d977.

    Article  PubMed  Google Scholar 

  45. Altman A, Szyper-Kravitz M, Shoenfeld Y. Colchicine-induced rhabdomyolysis. Clin Rheumatol. 2007;26(12):2197–9. https://doi.org/10.1007/s10067-007-0682-2.

    Article  PubMed  Google Scholar 

  46. Casado E, Gratacós J, Tolosa C, et al. Antimalarial myopathy: an underdiagnosed complication? Prospective longitudinal study of 119 patients. Ann Rheum Dis. 2006;65(3):385–90. https://doi.org/10.1136/ard.2004.023200.

    Article  CAS  PubMed  Google Scholar 

  47. •• Naddaf E, Paul P, AbouEzzeddine OF. 2021 Chloroquine and hydroxychloroquine myopathy: clinical spectrum and treatment outcomes. Front Neurol 2021;11:616075. https://doi.org/10.3389/fneur.2020.616075. Retrospective study describing the clinical features of 13 patients with myopathy secondary to chloroquine or hydroxychloroquine, highlighting a predilection for swallowing, respiratory, and cardiac muscles.

  48. Abdel-Hamid H, Oddis CV, Lacomis D. Severe hydroxychloroquine myopathy. Muscle Nerve. 2008;38(3):1206–10. https://doi.org/10.1002/mus.21091.

    Article  PubMed  Google Scholar 

  49. Muller R, Kugelberg E. Myopathy in Cushing’s syndrome. J Neurol Neurosurg Psychiatry. 1959;22(4):314–9. https://doi.org/10.1136/jnnp.22.4.314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khaleeli AA, Edwards RH, Gohil K, et al. Corticosteroid myopathy: a clinical and pathological study. Clin Endocrinol (Oxf). 1983;18(2):155–66. https://doi.org/10.1111/j.1365-2265.1983.tb03198.x.

    Article  CAS  Google Scholar 

  51. Haran M, Schattner A, Kozak N, Mate A, Berrebi A, Shvidel L. Acute steroid myopathy: a highly overlooked entity. QJM. 2018;111(5):307–11. https://doi.org/10.1093/qjmed/hcy031.

    Article  CAS  PubMed  Google Scholar 

  52. Doughty CT, Amato AA. Toxic myopathies. Continuum (Minneap Minn). 2019;25(6):1712–31. https://doi.org/10.1212/CON.0000000000000806.

    Article  Google Scholar 

  53. Pleasure DE, Walsh GO, Engel WK. Atrophy of skeletal muscle in patients with Cushing’s syndrome. Arch Neurol. 1970;22(2):118–25. https://doi.org/10.1001/archneur.1970.00480200024002.

    Article  CAS  PubMed  Google Scholar 

  54. Möhn N, Beutel G, Gutzmer R, Ivanyi P, Satzger I, Skripuletz T. Neurological immune related adverse events associated with nivolumab, ipilimumab, and pembrolizumab therapy-review of the literature and future outlook. J Clin Med. 2019;8(11):1777. https://doi.org/10.3390/jcm8111777.

    Article  CAS  PubMed Central  Google Scholar 

  55. •• Aldrich J, Pundole X, Tummala S et al. Inflammatory myositis in cancer patients receiving immune checkpoint inhibitors Arthritis Rheumatol. 2021;73(5):866–874. https://doi.org/10.1002/art.41604. Reported the incidence of ICI-myositis, including the incidence of overlap with myasthenia gravis, myocarditis, or both, in a large cohort of patients on ICI therapy. Patient outcomes who had overlap syndromes were worse than those with myositis alone.

  56. •• Schneider BJ, Naidoo J, Santomasso BD, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update [published correction appears in J Clin Oncol. 2022;40(3):315]. J Clin Oncol 2021;39(36):4073–4126. doi:https://doi.org/10.1200/JCO.21.01440. Provided guidelines on the management of patients with ICI-myositis.

  57. Touat M, Maisonobe T, Knauss S, et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer [published correction appears in Neurology. 2019;93(6):280. Neurology 2018;91(10):e985-e994]. https://doi.org/10.1212/WNL.0000000000006124.

  58. Haddox CL, Shenoy N, Shah KK, et al. Pembrolizumab induced bulbar myopathy and respiratory failure with necrotizing myositis of the diaphragm. Ann Oncol. 2017;28(3):673–5. https://doi.org/10.1093/annonc/mdw655.

    Article  CAS  PubMed  Google Scholar 

  59. Sekiguchi K, Hashimoto R, Noda Y, et al. Diaphragm involvement in immune checkpoint inhibitor-related myositis. Muscle Nerve. 2019;60(4):E23–5. https://doi.org/10.1002/mus.26640.

    Article  PubMed  Google Scholar 

  60. Jespersen MS, Fanø S, Stenør C, Møller AK. A case report of immune checkpoint inhibitor-related steroid-refractory myocarditis and myasthenia gravis-like myositis treated with abatacept and mycophenolate mofetil. Eur Heart J Case Rep. 2021;5(11):1–6. https://doi.org/10.1093/ehjcr/ytab342.

    Article  Google Scholar 

  61. Delyon J, Brunet-Possenti F, Leonard-Louis S, et al. Immune checkpoint inhibitor rechallenge in patients with immune-related myositis. Ann Rheum Dis. 2019;78(11): e129. https://doi.org/10.1136/annrheumdis-2018-214336.

    Article  PubMed  Google Scholar 

  62. Bradley WG, Lassman LP, Pearce GW, Walton JN. The neuromyopathy of vincristine in man. Clinical, electrophysiological and pathological studies. J Neurol Sci. 1970;10(2):107–131. https://doi.org/10.1016/0022-510x(70)90013-4.

  63. Adenis A, Bouché O, Bertucci F, et al. Serum creatine kinase increase in patients treated with tyrosine kinase inhibitors for solid tumors. Med Oncol. 2012;29(4):3003–8. https://doi.org/10.1007/s12032-012-0204-1.

    Article  CAS  PubMed  Google Scholar 

  64. Gordon JK, Magid SK, Maki RG, Fleisher M, Berman E. Elevations of creatine kinase in patients treated with imatinib mesylate (Gleevec). Leuk Res. 2010;34(6):827–9. https://doi.org/10.1016/j.leukres.2009.11.002.

    Article  CAS  PubMed  Google Scholar 

  65. Penel N, Blay JY, Adenis A. Imatinib as a possible cause of severe rhabdomyolysis. N Engl J Med. 2008;358(25):2746–7. https://doi.org/10.1056/NEJMc0708896.

    Article  CAS  PubMed  Google Scholar 

  66. Joel Chandranesan AS, Master S, Antosz O, PeytonThomas B, Koshy N. Dasatinib-induced rhabdomyolysis in a 33-year-old patient with chronic myeloid leukemia. Case Rep Hematol. 2018;2849869. https://doi.org/10.1155/2018/2849869.

  67. Uz B, Dolasik I. An unexpected and devastating adverse event of dasatinib: rhabdomyolysis. Leuk Res Rep. 2015;5:1–2. https://doi.org/10.1016/j.lrr.2015.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Srinivasan J, Wu CJ, Amato AA. Inflammatory myopathy associated with imatinib mesylate therapy. J Clin Neuromuscul Dis. 2004;5(3):119–21. https://doi.org/10.1097/00131402-200403000-00002.

    Article  PubMed  Google Scholar 

  69. Nofal A, El-Din ES. Hydroxyurea-induced dermatomyositis: true amyopathic dermatomyositis or dermatomyositis-like eruption? Int J Dermatol. 2012;51(5):535–41. https://doi.org/10.1111/j.1365-4632.2011.05105.x.

    Article  PubMed  Google Scholar 

  70. Vanneste JA, van Wijngaarden GK. Epsilon-aminocaproic acid myopathy. Report of a case and literature review. Eur Neurol 1982;21(4):242–8. https://doi.org/10.1159/000115487.

  71. Rivillas JA, Santos Andrade VA, Hormaza-Jaramillo AA. Myositis induced by isotretinoin: a case report and literature review. Am J Case Rep. 2020;21: e917801. https://doi.org/10.12659/AJCR.917801.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pecker LH, Tsai J, Angiolillo A. All-trans retinoic acid-induced inflammatory myositis in a patient with acute promyelocytic leukemia. Pediatr Radiol. 2014;44(8):1039–41. https://doi.org/10.1007/s00247-014-2951-y.

    Article  PubMed  Google Scholar 

  73. Chan KH, Yuen SL, Joshua D. A case of all-trans retinoic acid-induced myositis in the treatment of acute promyelocytic leukaemia. Clin Lab Haematol. 2005;27(6):399–401. https://doi.org/10.1111/j.1365-2257.2005.00729.x.

    Article  CAS  PubMed  Google Scholar 

  74. Barrios-Anderson A, Radhakrishnan R, Yu E, Shimanovsky A. Paraspinal radiation recall myositis after gemcitabine for pancreatic adenocarcinoma. BMJ Case Rep. 2021;14(5): e240896. https://doi.org/10.1136/bcr-2020-240896.

    Article  PubMed  Google Scholar 

  75. Ravishankar A, Park SS, Olivier KR, Corbin KS. Gemcitabine-induced radiation recall myositis: case report and review of the literature. Case Rep Oncol. 2018;11(1):168–78. https://doi.org/10.1159/000487478.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Roberts RJ, Barletta JF, Fong JJ, et al. Incidence of propofol-related infusion syndrome in critically ill adults: a prospective, multicenter study. Crit Care. 2009;13(5):R169. https://doi.org/10.1186/cc8145.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mirrakhimov AE, Voore P, Halytskyy O, Khan M, Ali AM. Propofol infusion syndrome in adults: a clinical update. Crit Care Res Pract. 2015;2015: 260385. https://doi.org/10.1155/2015/260385.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Colmenares EW, Pappas AL. Proton pump inhibitors: risk for myopathy? Ann Pharmacother. 2017;51(1):66–71. https://doi.org/10.1177/1060028016665641.

    Article  PubMed  Google Scholar 

  79. Clark DW, Strandell J. Myopathy including polymyositis: a likely class adverse effect of proton pump inhibitors? Eur J Clin Pharmacol. 2006;62(6):473–9. https://doi.org/10.1007/s00228-006-0131-1.

    Article  CAS  PubMed  Google Scholar 

  80. Lin SH, Chang YS, Lin TM, et al. Proton pump inhibitors increase the risk of autoimmune diseases: a nationwide cohort study. Front Immunol. 2021;12: 736036. https://doi.org/10.3389/fimmu.2021.736036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Duncan SJ, Howden CW. Proton pump inhibitors and risk of rhabdomyolysis. Drug Saf. 2017;40(1):61–4. https://doi.org/10.1007/s40264-016-0473-2.

    Article  CAS  PubMed  Google Scholar 

  82. Khoo T, Caughey GE, Hill C, Limaye V. Proton pump inhibitors are not associated with inflammatory myopathies: a case control study. Muscle Nerve. 2018;58(6):855–7. https://doi.org/10.1002/mus.26336.

    Article  CAS  PubMed  Google Scholar 

  83. Watson AJ, Dalbow MH, Stachura I, et al. Immunologic studies in cimetidine-induced nephropathy and polymyositis. N Engl J Med. 1983;308(3):142–5. https://doi.org/10.1056/NEJM198301203080307.

    Article  CAS  PubMed  Google Scholar 

  84. Hawkins RA, Eckhoff PJ Jr, MacCarter DK, Harmon CE. Cimetidine and polymyositis. N Engl J Med. 1983;309(3):187–8. https://doi.org/10.1056/nejm198307213090318.

    Article  CAS  PubMed  Google Scholar 

  85. Vierhapper H. Laxative-induced hypokalemic myopathy: a case history (abstract only). Wien Klin Wochenschr 1980;92(3):101–103.

  86. Welk B, McArthur E, Ordon M, Dirk J, Dixon S, Garg AX. Risk of rhabdomyolysis from 5-α reductase inhibitors. Pharmacoepidemiol Drug Saf. 2018;27(3):351–5. https://doi.org/10.1002/pds.4383.

    Article  CAS  PubMed  Google Scholar 

  87. Al-Harbi TM, Kagan J, Tarnopolsky MA. Finasteride-induced myalgia and HyperCKemia. J Clin Neuromuscul Dis. 2008;10(2):76–8. https://doi.org/10.1097/CND.0b013e3181873cca.

    Article  PubMed  Google Scholar 

  88. Haan J, Hollander JM, van Duinen SG, Saxena PR, Wintzen AR. Reversible severe myopathy during treatment with finasteride. Muscle Nerve. 1997;20(4):502–4. https://doi.org/10.1002/(sici)1097-4598(199704)20:4%3c502::aid-mus15%3e3.0.co;2-#.

    Article  CAS  PubMed  Google Scholar 

  89. Ruisz W, Stöllberger C, Finsterer J, Weidinger F. Furosemide-induced severe hypokalemia with rhabdomyolysis without cardiac arrest. BMC Womens Health. 2013;13:30. https://doi.org/10.1186/1472-6874-13-30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Peters BS, Winer J, Landon DN, et al. Mitochondrial myopathy associated with chronic zidovudine therapy in AIDS. Q J Med. 1993;86(1):5–15.

    CAS  PubMed  Google Scholar 

  91. Xu H, Wang Z, Zheng L, et al. Lamivudine/telbivudine-associated neuromyopathy: neurogenic damage, mitochondrial dysfunction and mitochondrial DNA depletion. J Clin Pathol. 2014;67(11):999–1005. https://doi.org/10.1136/jclinpath-2013-202069.

    Article  CAS  PubMed  Google Scholar 

  92. Yuan K, Guochun W, Huang Z, Lin B, Zhou H, Lu X. Entecavir-associated myopathy: a case report and literature review. Muscle Nerve. 2014;49(4):610–4. https://doi.org/10.1002/mus.24118.

    Article  PubMed  Google Scholar 

  93. Ambang T, Tan JS, Ong S, Wong KT, Goh KJ. Clinicopathological features of telbivudine-associated myopathy. PLoS ONE. 2016;11(9): e0162760. https://doi.org/10.1371/journal.pone.0162760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zou XJ, Jiang XQ, Tian DY. Clinical features and risk factors of creatine kinase elevations and myopathy associated with telbivudine. J Viral Hepat. 2011;18(12):892–6. https://doi.org/10.1111/j.1365-2893,2010.01412.x.

    Article  CAS  PubMed  Google Scholar 

  95. Turan I, Yapali S, Bademkiran F, et al. Telbivudine in liver transplant recipients: renal protection does not overcome the risk of polyneuropathy and myopathy. Liver Transpl. 2015;21(8):1066–75. https://doi.org/10.1002/lt.24131.

    Article  PubMed  Google Scholar 

  96. Madeddu G, De Socio GV, Ricci E, et al. Muscle symptoms and creatine phosphokinase elevations in patients receiving raltegravir in clinical practice: results from the SCOLTA project long-term surveillance. Int J Antimicrob Agents. 2015;45(3):289–94. https://doi.org/10.1016/j.ijantimicag.2014.10.013.

    Article  CAS  PubMed  Google Scholar 

  97. Lee FJ, Amin J, Bloch M, Pett SL, Marriott D, Carr A. Skeletal muscle toxicity associated with raltegravir-based combination antiretroviral therapy in HIV-infected adults. J Acquir Immune Defic Syndr. 2013;62(5):525–33. https://doi.org/10.1097/QAI.0b013e3182832578.

    Article  CAS  PubMed  Google Scholar 

  98. Seaton RA, Gonzalez-Ruiz A, Cleveland KO, Couch KA, Pathan R, Hamed K. Real-world daptomycin use across wide geographical regions: results from a pooled analysis of CORE and EU-CORE. Ann Clin Microbiol Antimicrob 2016;15:18. https://doi.org/10.1186/s12941-016-0130-8.

  99. Dare RK, Tewell C, Harris B, et al. Effect of statin coadministration on the risk of daptomycin-associated myopathy. Clin Infect Dis. 2018;67(9):1356–63. https://doi.org/10.1093/cid/ciy287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shanmugam VK, Matsumoto C, Pien E, et al. Voriconazole-associated myositis. J Clin Rheumatol. 2009;15(7):350–3. https://doi.org/10.1097/RHU.0b013e318188bea7.

    Article  PubMed  Google Scholar 

  101. Soliman M, Akanbi O, Harding C, El-Helw M, Anstead M. Voriconazole-induced myositis in a double lung transplant recipient. Cureus. 2019;11(2): e3998. https://doi.org/10.7759/cureus.3998.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Alawfi A, Algarni A, Donesa J, et al. Voriconazole-induced severe hypokalemic rhabdomyolysis: a case report. Int J Pediatr Adolesc. 2021. https://doi.org/10.1016/j.ijpam.2021.03.007.

    Article  Google Scholar 

  103. Drutz DJ, Fan JH, Tai TY, Cheng JT, Hsieh WC. Hypokalemic rhabdomyolysis and myoglobinuria following amphotericin B therapy. JAMA. 1970;211(5):824–6.

    Article  CAS  Google Scholar 

  104. Moinuddin IA. Suspected levetiracetam-induced rhabdomyolysis: a case report and literature review. Am J Case Rep. 2020;21: e926064. https://doi.org/10.12659/AJCR.926064.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Karaoulanis SE, Syngelakis M, Fokas K. Rhabdomyolysis after lamotrigine overdose: a case report and review of the literature. Ann Gen Psychiatry. 2016;15:6. https://doi.org/10.1186/s12991-016-0093-3.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kasturi L, Sawant SP. Sodium valproate – induced skeletal myopathy. Indian J Pediatr. 2005;72(3):243–4 (PMID: 15812121).

    Article  Google Scholar 

  107. Ahmed R. Sodium valproate-induced myopathy in a child. Sultan Qaboos Univ Med J. 2015;15(1):e146–7.

    PubMed  PubMed Central  Google Scholar 

  108. Al-Mendalawi MD. Re: Sodium valproate-induced myopathy in a child. Sultan Qaboos Univ Med J. 2015;15(3):e444. https://doi.org/10.18295/squmj.2015.15.03.026.

  109. Finsterer J, Frank M. Re: Sodium valproate-induced myopathy in a child. Sultan Qaboos Univ Med J. 2015;15(3):e442–3. https://doi.org/10.18295/squmj.2015.15.03.025.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kottlors M, Jaksch M, Ketelsen UP, Weiner S, Glocker FX, Lücking CH. Valproic acid triggers acute rhabdomyolysis in a patient with carnitine palmitoyltransferase type II deficiency. Neuromuscul Disord. 2001;11(8):757–9. https://doi.org/10.1016/s0960-8966(01)00228-0.

    Article  CAS  PubMed  Google Scholar 

  111. Papadimitriou A, Servidei S. Late onset lipid storage myopathy due to multiple acyl CoA dehydrogenase deficiency triggered by valproate. Neuromuscul Disord. 1991;1(4):247–52. https://doi.org/10.1016/0960-8966(91)90097-c.

    Article  CAS  PubMed  Google Scholar 

  112. Takahashi K, Ogita T, Okudaira H, et al. D-penicillamine-induced polymyositis in patients with rheumatoid arthritis. Arthritis Rheum. 1986;29(4):560–4. https://doi.org/10.1002/art.1780290416.

    Article  CAS  PubMed  Google Scholar 

  113. Packard K, Price P, Hanson A. Antipsychotic use and the risk of rhabdomyolysis. J Pharm Pract. 2014;27(5):501–12. https://doi.org/10.1177/0897190013516509.

    Article  PubMed  Google Scholar 

  114. Boot E, de Haan L. Massive increase in serum creatine kinase during olanzapine and quetiapine treatment, not during treatment with clozapine. Psychopharmacology. 2000;150:347–8. https://doi.org/10.1007/s002130000464.

    Article  CAS  PubMed  Google Scholar 

  115. Melli G, Chaudhry V, Cornblath DR. Rhabdomyolysis: an evaluation of 475 hospitalized patients. Medicine (Baltimore). 2005;84(6):377–85. https://doi.org/10.1097/01.md.0000188565.48918.41.

    Article  Google Scholar 

  116. Lewien A, Kranaster L, Hoyer C, Elkin H, Sartorius A. Escitalopram-related rhabdomyolysis. J Clin Psychopharmacol. 2011;31(2):251–3. https://doi.org/10.1097/JCP.0b013e31820f4f84.

    Article  PubMed  Google Scholar 

  117. Snyder M, Kish T. Sertraline-induced rhabdomyolysis: a case report and literature review. Am J Ther. 2016;23(2):e561–5. https://doi.org/10.1097/MJT.0000000000000196.

    Article  PubMed  Google Scholar 

  118. Marson JW, Baldwin HE. The creatine kinase conundrum: a reappraisal of the association of isotretinoin, creatine kinase, and rhabdomyolysis. Int J Dermatol. 2020;59(3):279–83. https://doi.org/10.1111/ijd.14758.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul T. McIntosh MD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuromuscular Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIntosh, P.T., Doughty, C.T. Toxic Myopathies. Curr Treat Options Neurol 24, 217–239 (2022). https://doi.org/10.1007/s11940-022-00718-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-022-00718-3

Keywords

Navigation