Skip to main content

Advertisement

Log in

Newer Immunotherapies for the Treatment of Acute Neuromuscular Disease in the Critical Care Unit

  • Critical Care Neurology (H Hinson, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Purpose of review

In this review, we discuss current treatment options for commonly encountered neuromuscular disorders in intensive care units. We will discuss epidemiology, pathophysiology, and acute and chronic treatment options for myasthenia gravis, Guillain-Barré syndrome, West Nile virus, Botulism, and amyotrophic lateral sclerosis.

Recent findings

Eculizumab is the newest immunomodulator therapy approved by the Food and Drug Administration in treatment of myasthenia gravis, shown to improve long-term functional outcomes. Edaravone is the newest therapy in management of amyotrophic lateral sclerosis, shown to slow functional deterioration. Efgartigimod showed great promise in a phase 2 safety and efficacy trial in the treatment of stable generalized myasthenia gravis. Eculizumab was found to be safe in a small phase 2 trial for use in Guillain-Barré syndrome.

Summary

Currently, therapies such as plasma exchange, intravenous immunoglobulins, and steroids remain the mainstay of treatment in the ICU for many neuromuscular disorders. While there are some newer immunotherapies available, few have been studied in the acute setting. However, with the advent of new immunotherapies and biologics, changes in these approaches may be on the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lacomis D, Petrella JT, Giuliani MJ. Causes of neuromuscular weakness in the intensive care unit: a study of ninety-two patients. Muscle Nerve. 1998;21(5):610–7.

    Article  CAS  PubMed  Google Scholar 

  2. Crespo V, James ML. Neuromuscular disease in the neurointensive care unit. Anesthesiol Clin. 2016;34(3):601–19.

    Article  PubMed  Google Scholar 

  3. Heatwole C. et al. Plasma Exchange versus Intravenous Immunoglobulin for Myasthenia Gravis Crisis: An Acute Hospital Cost Comparison Study. 2011;13(2):85–94.

    Google Scholar 

  4. Guptill JT, Runken MC, Eaddy M, Lunacsek O, Fuldeore RM. Treatment patterns and costs of chronic inflammatory demyelinating polyneuropathy: a claims database analysis. Am Health Drug Benefits. 2019;12(3):127–35.

    PubMed  PubMed Central  Google Scholar 

  5. Peres J, et al. Rituximab in generalized myasthenia gravis: clinical, quality of life and cost–utility analysis. Porto Biomedical Journal. 2017;2(3):81–5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bonifati DM, Angelini C. Long-term cyclosporine treatment in a group of severe myasthenia gravis patients. J Neurol. 1997;244(9):542–7.80.

    Article  CAS  PubMed  Google Scholar 

  7. Stone K. The most expensive prescription drugs in the world 2018 [updated 12/30/2018]. Available from: https://www.thebalance.com/the-8-most-expensive-prescription-drugs-in-the-world-2663232.

  8. Azathioprine: drug information: UpToDate Inc; Available from: https://www.uptodate.com/contents/azathioprine-drug-information?search=azathioprine&source=panel_search_result&selectedTitle=1~149&usage_type=panel&kp_tab=drug_general&display_rank=1#F138204.

  9. Cyclophosphamide: drug information: UpToDate Inc; Available from: https://www.uptodate.com/contents/cyclophosphamide-drug-information?sectionName=Adult&topicId=9308&search=cyclophosphamide%20drug%20information&usage_type=panel&anchor=F155460&source=panel_search_result&selectedTitle=1~148&kp_tab=drug_general&display_rank=1#F155437.

  10. • Burakgazi AZ. Immunoglobulin treatment in neuromuscular medicine. J Clin Neuromuscul Dis. 2019;20(4):182–93 Provides details on IVIg therapy in NMD.

    Article  PubMed  Google Scholar 

  11. • Osman C, et al. Plasma exchange in neurological disease. Pract Neurol. 2019:practneurol-201 Provides details on plasma exchange in NMD.

  12. Szczeklik W, Wawrzycka K, Włudarczyk A, Sega A, Nowak I, Seczyńska B, et al. Complications in patients treated with plasmapheresis in the intensive care unit. Anaesthesiol Intensive Ther. 2013;45(1):7–13.

    Article  PubMed  Google Scholar 

  13. Lindberg C, Andersen O, Lefvert AK. Treatment of myasthenia gravis with methylprednisolone pulse: a double blind study. Acta Neurol Scand. 1998;97(6):370–3.

    Article  CAS  PubMed  Google Scholar 

  14. Sathasivam S. Steroids and immunosuppressant drugs in myasthenia gravis. Nat Clin Pract Neurol. 2008;4(6):317–27.

    Article  CAS  PubMed  Google Scholar 

  15. Fonseca V, Havard CW. Long term treatment of myasthenia gravis with azathioprine. Postgrad Med J. 1990;66(772):102–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A randomised clinical trial comparing prednisone and azathioprine in myasthenia gravis. Results of the second interim analysis. Myasthenia Gravis Clinical Study Group. J Neurol Neurosurg Psychiatry. 1993;56(11):1157–63.

  17. Palace J, Newsom-Davis J, Lecky B. A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia Gravis Study Group. Neurology. 1998;50(6):1778–83.

    Article  CAS  PubMed  Google Scholar 

  18. Perez MC, Buot WL, Mercado-Danguilan C, Bagabaldo ZG, Renales LD. Stable remissions in myasthenia gravis. Neurology. 1981;31(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  19. De Feo LG, et al. Use of intravenous pulsed cyclophosphamide in severe, generalized myasthenia gravis. Muscle Nerve. 2002;26(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  20. Drachman DB, et al. Rebooting the immune system with high-dose cyclophosphamide for treatment of refractory myasthenia gravis. Ann N Y Acad Sci. 2008;1132(1):305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cerny T, et al. Mechanism of action of rituximab. Anti-Cancer Drugs. 2002;13(Suppl 2):S3–10.

    Article  CAS  PubMed  Google Scholar 

  22. Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology. 2000;47(2–3):119–25.

    Article  CAS  PubMed  Google Scholar 

  23. Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit. 1995;17(6):584–91.

    Article  CAS  PubMed  Google Scholar 

  24. Ciafaloni E, et al. Retrospective analysis of the use of cyclosporine in myasthenia gravis. Neurology. 2000;55(3):448–50.

    Article  CAS  PubMed  Google Scholar 

  25. Ponseti JM, Gamez J, Azem J, López-Cano M, Vilallonga R, Armengol M. Tacrolimus for myasthenia gravis: a clinical study of 212 patients. Ann N Y Acad Sci. 2008;1132:254–63.

    Article  CAS  PubMed  Google Scholar 

  26. Carr AS, et al. A systematic review of population based epidemiological studies in myasthenia gravis. BMC Neurol. 2010;10:46.

    Article  PubMed  PubMed Central  Google Scholar 

  27. • Wijdicks EF. Management of acute neuromuscular disorders. Handb Clin Neurol. 2017;140:229–37 Provides comprehensive summary of NMD management in ICU.

    Article  CAS  PubMed  Google Scholar 

  28. Nicolle MW. Myasthenia gravis and Lambert-Eaton myasthenic syndrome. Continuum (Minneap Minn). 2016;22(6, Muscle and Neuromuscular Junction Disorders):1978–2005.

    Google Scholar 

  29. Koneczny I, Cossins J, Vincent A. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. J Anat. 2014;224(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  30. •• Beecher G, Putko BN, Wagner AN, Siddiqi ZA. Therapies directed against B-cells and downstream effectors in generalized autoimmune myasthenia gravis: current status. Drugs. 2019;79(4):353–64 Provides additional details on ritixumab and its mechanism for immunomodulation.

    Article  CAS  PubMed  Google Scholar 

  31. Berrih-Aknin S. Cortactin: a new target in autoimmune myositis and myasthenia gravis. Autoimmun Rev. 2014;13(10):1001–2.

    Article  CAS  PubMed  Google Scholar 

  32. Binks S, Vincent A, Palace J. Myasthenia gravis: a clinical-immunological update. J Neurol. 2016;263(4):826–34.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang B, Shen C, Bealmear B, Ragheb S, Xiong WC, Lewis RA, et al. Autoantibodies to Agrin in myasthenia gravis patients. PLoS One. 2014;9(3):e91816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomas CE, Mayer SA, Gungor Y, Swarup R, Webster EA, Chang I, et al. Myasthenic crisis: clinical features, mortality, complications, and risk factors for prolonged intubation. Neurology. 1997;48(5):1253–60.

    Article  CAS  PubMed  Google Scholar 

  35. Gajdos P, Chevret S, Toyka KV. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst Rev. 2012;12:Cd002277.

    PubMed  Google Scholar 

  36. Bril V, et al. IVIG and PLEX in the treatment of myasthenia gravis. Ann N Y Acad Sci. 2012;1275(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  37. Dhawan PS, Goodman BP, Harper CM, Bosch PE, Hoffman-Snyder CR, Wellik KE, et al. IVIG versus PLEX in the treatment of worsening myasthenia gravis: what is the evidence?: a critically appraised topic. Neurologist. 2015;19(5):145–8.

    Article  PubMed  Google Scholar 

  38. Skeie GO, Apostolski S, Evoli A, Gilhus NE, Illa I, Harms L, et al. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol. 2010;17(7):893–902.

    Article  CAS  PubMed  Google Scholar 

  39. Dhillon S. Eculizumab: a review in generalized myasthenia gravis. Drugs. 2018;78(3):367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. •• Howard JF Jr, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017;16(12):976–86 Landmark trial which resulted in approval of eculizumab in treatment of MG.

    Article  CAS  PubMed  Google Scholar 

  41. Edmundson C, Guidon AC. Eculizumab: a complementary addition to existing long-term therapies for myasthenia gravis. Muscle Nerve. 2019.

  42. •• Howard JF, et al. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology. 2019;92(23):e2661–73 Landmark phase 2 study which showed safety and efficacy of using efgartigimod in MG.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuki N, Hartung H-P. Guillain–Barré syndrome. N Engl J Med. 2012;366(24):2294–304.

    Article  CAS  PubMed  Google Scholar 

  44. McGrogan A, Madle GC, Seaman HE, de Vries CS. The epidemiology of Guillain-Barré syndrome worldwide. Neuroepidemiology. 2009;32(2):150–63.

    Article  PubMed  Google Scholar 

  45. Sejvar JJ, Baughman AL, Wise M, Morgan OW. Population incidence of Guillain-Barré syndrome: a systematic review and meta-analysis. Neuroepidemiology. 2011;36(2):123–33.

    Article  PubMed  Google Scholar 

  46. Wu X, et al. Predictors for mechanical ventilation and short-term prognosis in patients with Guillain-Barré syndrome. Crit Care. 2015;19(1).

  47. Harms M. Inpatient management of Guillain-Barré syndrome. Neurohospitalist. 2011;1(2):78–84.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hughes RAC, et al. Corticosteroids for Guillain-Barré syndrome. Cochrane Database Syst Rev. 2016;10.

  49. Lawn ND, et al. Anticipating mechanical ventilation in Guillain-Barré syndrome. 2001;58(6):893.

  50. Kannan Kanikannan MA, Durga P, Venigalla NK, Kandadai RM, Jabeen SA, Borgohain R. Simple bedside predictors of mechanical ventilation in patients with Guillain-Barre syndrome. J Crit Care. 2014;29(2):219–23.

    Article  PubMed  Google Scholar 

  51. Willison HJ, Goodyear CS. Glycolipid antigens and autoantibodies in autoimmune neuropathies. Trends Immunol. 2013;34(9):453–9.

    Article  CAS  PubMed  Google Scholar 

  52. • Chevret S, Hughes RAC, Annane D. Plasma exchange for Guillain-Barré syndrome. Cochrane Database Syst Rev. 2017;(2) Provides an overall summary of several previously published articles on use of PLEX in treatment of GBS.

  53. •• Misawa S, et al. Safety and efficacy of eculizumab in Guillain-Barré syndrome: a multicentre, double-blind, randomised phase 2 trial. Lancet Neurol. 2018;17(6):519–29 Phase 2 trial which showed safety of eculizumab in GBS. Efficacy not established from small study, albeit there was an overall trend towards improvement.

    Article  CAS  PubMed  Google Scholar 

  54. Marin B, Boumédiene F, Logroscino G, Couratier P, Babron MC, Leutenegger AL, et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int J Epidemiol. 2017;46(1):57–74.

    PubMed  Google Scholar 

  55. Marin B, Fontana A, Arcuti S, Copetti M, Boumédiene F, Couratier P, et al. Age-specific ALS incidence: a dose-response meta-analysis. Eur J Epidemiol. 2018;33(7):621–34.

    Article  PubMed  Google Scholar 

  56. Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377(2):162–72.

    Article  CAS  PubMed  Google Scholar 

  57. Beard JD, Engel LS, Richardson DB, Gammon MD, Baird C, Umbach DM, et al. Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis etiology. Environ Int. 2016;91:104–15.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bonafede R, Mariotti R. ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front Cell Neurosci. 2017;11:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lucette Lacomblez GB, Leigh PN, Guillet P, Meininger V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet. 1996;347(9013):1425–31.

    Article  Google Scholar 

  60. • Abe K, et al. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017;16(7):505–12 Randomized trial which showed safety and efficacy of Edaravone in ALS.

    Article  Google Scholar 

  61. Abe K, et al. Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(7–8):610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Available from: https://www.radicava.com/assets/dist/pdfs/radicava-prescribing-information.pdf.

  63. Khalid SI, et al. Immune modulation in the treatment of amyotrophic lateral sclerosis: a review of clinical trials. Front Neurol. 2017;8:486.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Crum-Cianflone NF. Bacterial, fungal, parasitic, and viral myositis. Clin Microbiol Rev. 2008;21(3):473–94.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Robinson-Papp J. Infectious neuropathies. CONTINUUM: Lifelong Learning in Neurology. 2012;18(1):126–38.

    PubMed  Google Scholar 

  66. Hayes EB, Komar N, Nasci RS, Montgomery SP, O’Leary DR, Campbell GL. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis. 2005;11(8):1167–73.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis. 2005;11(8):1174–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hughes JM, Wilson ME, Sejvar JJ. The long-term outcomes of human West Nile virus infection. Clin Infect Dis. 2007;44(12):1617–24.

    Article  Google Scholar 

  69. Lim SM, Koraka P, Osterhaus AD, Martina BE. West Nile virus: immunity and pathogenesis. Viruses. 2011;3(6):811–28.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fateh R, et al. Interferon-alpha in a patient with West Nile virus myelitis: a case-report. (P5.114). Neurology. 2015;84(14 Supplement):P5.114.

    Google Scholar 

  71. Shimoni Z, et al. The clinical response of West Nile virus neuroinvasive disease to intravenous immunoglobulin therapy. Clin Pract. 2012;2(1):e18–8.

  72. Hart J, et al. West Nile virus neuroinvasive disease: neurological manifestations and prospective longitudinal outcomes. BMC Infect Dis. 2014;14(1):248.

    Article  PubMed  PubMed Central  Google Scholar 

  73. National Botulism Surveillance Center of Disease Control and Prevention [updated June 6, 2019. Available from: https://www.cdc.gov/botulism/surveillance.html.

  74. Dressler D, Adib SF. Botulinum toxin: mechanisms of action. Eur Neurol. 2005;53(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  75. Botulism in United States, 1899–1996. Handbook for epidemiologists, clinicians, and laboratory workers Center of Disease Control and Prevention; 1998.

  76. Simpson LL. Identification of the major steps in botulinum toxin action. Annu Rev Pharmacol Toxicol. 2004;44(1):167–93.

    Article  CAS  PubMed  Google Scholar 

  77. Robinson RF, Nahata MC. Management of botulism. 2003;37:127–31.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Starane A. Shepherd MD.

Ethics declarations

Conflict of Interest

Dr. Patel declares that he has no conflict of interest.

Dr. Lynch declares that she has no conflict of interest.

Dr. Shepherd declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Critical Care Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A., Lynch, F. & Shepherd, S.A. Newer Immunotherapies for the Treatment of Acute Neuromuscular Disease in the Critical Care Unit. Curr Treat Options Neurol 22, 7 (2020). https://doi.org/10.1007/s11940-020-0616-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-020-0616-8

Keywords

Navigation