Skip to main content

Advertisement

Log in

New Avenues in Radiotherapy of Glioblastoma: from Bench to Bedside

  • Neuro-oncology (R Soffietti, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of Review

This review presents the new updates in treatment by radiotherapy of patients with glioblastoma. Despite the standard treatment, patients with glioblastoma present a relapse quasi-systematic observed in radiation fields with recurrent tumors resistant to therapy. We will highlight new targets involved in radioresistance, discovered in vitro, and that could have an impact in new treatments for glioblastoma, which remains a lethal tumor.

Recent Findings

So far, clinical studies did not show any efficacy for patients except the one involving tumor-treating fields. For the last decade, it has been discovered within the tumor the presence of a sub-population of glioblastoma stem cells shown to be highly tumorigenic with high plasticity properties and radioresistant and that can explain the high glioblastoma recurrence rate.

Summary

Recently published studies in glioblastoma stem cells highlighted new pathways that could be targeted concomitantly with radiotherapy in future clinical trials. Moreover, targeted therapies should be adapted to the individual molecular profile of the tumor, during the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weller M, Le Rhun E, Preusser M, Tonn JC, Roth P. How we treat glioblastoma. ESMO Open. 2019;4(Suppl 2):e000520. https://doi.org/10.1136/esmoopen-2019-000520.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2018;33(1):152. https://doi.org/10.1016/j.ccell.2017.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stupp R, Mayer M, Kann R, Weder W, Zouhair A, Betticher DC, et al. Neoadjuvant chemotherapy and radiotherapy followed by surgery in selected patients with stage IIIB non-small-cell lung cancer: a multicentre phase II trial. Lancet Oncol. 2009;10(8):785–93. https://doi.org/10.1016/S1470-2045(09)70172-X.

    Article  CAS  PubMed  Google Scholar 

  4. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Go, no-go decision making for phase 3 clinical trials: ACT IV revisited - Authors’ reply. Lancet Oncol. 2017;18(12):e709–e10. https://doi.org/10.1016/S1470-2045(17)30856-2.

    Article  PubMed  Google Scholar 

  5. Sullivan JP, Nahed BV, Madden MW, Oliveira SM, Springer S, Bhere D, et al. Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov. 2014;4(11):1299–309. https://doi.org/10.1158/2159-8290.CD-14-0471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071–22,072 study): a multicentre, randomized, open-label, phase 3 trial. Lancet Oncol. 2014;15(10):1100–8. https://doi.org/10.1016/S1470-2045(14)70379-1.

    Article  CAS  PubMed  Google Scholar 

  7. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22. https://doi.org/10.1056/NEJMoa1308345.

    Article  CAS  PubMed  Google Scholar 

  8. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708. https://doi.org/10.1056/NEJMoa1308573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao Z, Scandura JM, Inghirami GG, Shido K, Ding BS, Rafii S. Molecular checkpoint decisions made by subverted vascular niche transform indolent tumor cells into chemoresistant cancer stem cells. Cancer Cell. 2017;31(1):110–26. https://doi.org/10.1016/j.ccell.2016.11.010.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng L, Bao S, Rich JN. Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol. 2010;80(5):654–65. https://doi.org/10.1016/j.bcp.2010.04.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60. https://doi.org/10.1038/nature05236.

    Article  CAS  PubMed  Google Scholar 

  12. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396–401. https://doi.org/10.1126/science.1254257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6. https://doi.org/10.1038/nature11287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Osuka S, Sampetrean O, Shimizu T, Saga I, Onishi N, Sugihara E, et al. IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem Cells. 2013;31(4):627–40. https://doi.org/10.1002/stem.1328.

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, Zairis S, et al. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016;48(7):768–76. https://doi.org/10.1038/ng.3590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014;343(6167):189–93. https://doi.org/10.1126/science.1239947.

    Article  CAS  PubMed  Google Scholar 

  17. Mazor T, Pankov A, Johnson BE, Hong C, Hamilton EG, Bell RJA, et al. DNA methylation and somatic mutations converge on the cell cycle and define similar evolutionary histories in brain tumors. Cancer Cell. 2015;28(3):307–17. https://doi.org/10.1016/j.ccell.2015.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim J, Lee IH, Cho HJ, Park CK, Jung YS, Kim Y, et al. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell. 2015;28(3):318–28. https://doi.org/10.1016/j.ccell.2015.07.013.

    Article  CAS  PubMed  Google Scholar 

  19. Auffinger B, Tobias AL, Han Y, Lee G, Guo D, Dey M, et al. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 2014;21(7):1119–31. https://doi.org/10.1038/cdd.2014.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tamura K, Aoyagi M, Wakimoto H, Ando N, Nariai T, Yamamoto M, et al. Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J Neurosurg. 2010;113(2):310–8. https://doi.org/10.3171/2010.2.JNS091607.

    Article  PubMed  Google Scholar 

  21. Bartkova J, Hamerlik P, Stockhausen MT, Ehrmann J, Hlobilkova A, Laursen H, et al. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signaling in human gliomas. Oncogene. 2010;29(36):5095–102. https://doi.org/10.1038/onc.2010.249.

    Article  CAS  PubMed  Google Scholar 

  22. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, et al. CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67(9):4010–5. https://doi.org/10.1158/0008-5472.CAN-06-4180.

    Article  CAS  PubMed  Google Scholar 

  23. Patties I, Kallendrusch S, Bohme L, Kendzia E, Oppermann H, Gaunitz F, et al. The Chk1 inhibitor SAR-020106 sensitizes human glioblastoma cells to irradiation, to temozolomide, and to decitabine treatment. J Exp Clin Cancer Res. 2019;38(1):420. https://doi.org/10.1186/s13046-019-1434-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berardinelli F, Tanori M, Muoio D, Buccarelli M, di Masi A, Leone S, et al. G-quadruplex ligand RHPS4 radiosensitizes glioblastoma xenograft in vivo through a differential targeting of bulky differentiated- and stem-cancer cells. J Exp Clin Cancer Res. 2019;38(1):311. https://doi.org/10.1186/s13046-019-1293-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells. Cancer Res. 2015;75(20):4416–28. https://doi.org/10.1158/0008-5472.CAN-14-3790.

    Article  CAS  PubMed  Google Scholar 

  26. Fukumoto Y. Radiosensitization of cancer stem cells in glioblastoma by the simultaneous inhibition of parallel DNA damage response pathways. Ann Transl Med. 2017;5(Suppl 1):S2. https://doi.org/10.21037/atm.2017.03.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. King HO, Brend T, Payne HL, Wright A, Ward TA, Patel K, et al. RAD51 is a selective DNA repair target to radiosensitize glioma stem cells. Stem Cell Rep. 2017;8(1):125–39. https://doi.org/10.1016/j.stemcr.2016.12.005.

    Article  CAS  Google Scholar 

  28. Tachon G, Cortes U, Guichet PO, Rivet P, Balbous A, Masliantsev K, et al. Cell cycle changes after glioblastoma stem cell irradiation: the major role of RAD51. Int J Mol Sci. 2018;19(10). https://doi.org/10.3390/ijms19103018.

  29. Lesueur P, Chevalier F, El-Habr EA, Junier MP, Chneiweiss H, Castera L, et al. Radiosensitization effect of talazoparib, a parp inhibitor, on glioblastoma stem cells exposed to low and high linear energy transfer radiation. Sci Rep. 2018;8(1):3664. https://doi.org/10.1038/s41598-018-22022-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lemasson B, Wang H, Galban S, Li Y, Zhu Y, Heist KA, et al. Evaluation of concurrent radiation, temozolomide and ABT-888 treatment followed by maintenance therapy with temozolomide and ABT-888 in a genetically engineered glioblastoma mouse model. Neoplasia. 2016;18(2):82–9. https://doi.org/10.1016/j.neo.2015.11.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carruthers RD, Ahmed SU, Ramachandran S, Strathdee K, Kurian KM, Hedley A, et al. Replication stress drives constitutive activation of the DNA damage response and radioresistance in glioblastoma stem-like cells. Cancer Res. 2018;78(17):5060–71. https://doi.org/10.1158/0008-5472.CAN-18-0569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghorai A, Mahaddalkar T, Thorat R, Dutt S. Sustained inhibition of PARP-1 activity delays glioblastoma recurrence by enhancing radiation-induced senescence. Cancer Lett. 2020. https://doi.org/10.1016/j.canlet.2020.06.023.

  33. Lesueur P, Lequesne J, Grellard JM, Dugue A, Coquan E, Brachet PE, et al. Phase I/IIa study of concomitant radiotherapy with olaparib and temozolomide in unresectable or partially resectable glioblastoma: OLA-TMZ-RTE-01 trial protocol. BMC Cancer. 2019;19(1):198. https://doi.org/10.1186/s12885-019-5413-y.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jamal M, Rath BH, Williams ES, Camphausen K, Tofilon PJ. Microenvironmental regulation of glioblastoma radioresponse. Clin Cancer Res. 2010;16(24):6049–59. https://doi.org/10.1158/1078-0432.CCR-10-2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cordes N, Hansmeier B, Beinke C, Meineke V, van Beuningen D. Irradiation differentially affects substratum-dependent survival, adhesion, and invasion of glioblastoma cell lines. Br J Cancer. 2003;89(11):2122–32. https://doi.org/10.1038/sj.bjc.6601429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monferran S, Skuli N, Delmas C, Favre G, Bonnet J, Cohen-Jonathan-Moyal E, et al. Alphavbeta3 and alphavbeta5 integrins control glioma cell response to ionising radiation through ILK and RhoB. Int J Cancer. 2008;123(2):357–64. https://doi.org/10.1002/ijc.23498.

    Article  CAS  PubMed  Google Scholar 

  37. Ducassou A, Uro-Coste E, Verrelle P, Filleron T, Benouaich-Amiel A, Lubrano V, et al. alphavbeta3 integrin and fibroblast growth factor receptor 1 (FGFR1): prognostic factors in a phase I-II clinical trial associating continuous administration of Tipifarnib with radiotherapy for patients with newly diagnosed glioblastoma. Eur J Cancer. 2013;49(9):2161–9. https://doi.org/10.1016/j.ejca.2013.02.033.

    Article  CAS  PubMed  Google Scholar 

  38. Malric L, Monferran S, Delmas C, Arnauduc F, Dahan P, Boyrie S, et al. Inhibiting integrin beta8 to differentiate and radiosensitize glioblastoma-initiating cells. Mol Cancer Res. 2019;17(2):384–97. https://doi.org/10.1158/1541-7786.MCR-18-0386.

    Article  CAS  PubMed  Google Scholar 

  39. Kowalski-Chauvel A, Modesto A, Gouaze-Andersson V, Baricault L, Gilhodes J, Delmas C, et al. Alpha-6 integrin promotes radioresistance of glioblastoma by modulating DNA damage response and the transcription factor Zeb1. Cell Death Dis. 2018;9(9):872. https://doi.org/10.1038/s41419-018-0853-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh DK, Kollipara RK, Vemireddy V, Yang XL, Sun Y, Regmi N, et al. Oncogenes activate an autonomous transcriptional regulatory circuit that drives glioblastoma. Cell Rep. 2017;18(4):961–76. https://doi.org/10.1016/j.celrep.2016.12.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garros-Regulez L, Garcia I, Carrasco-Garcia E, Lantero A, Aldaz P, Moreno-Cugnon L, et al. Targeting SOX2 as a therapeutic strategy in glioblastoma. Front Oncol. 2016;6:222. https://doi.org/10.3389/fonc.2016.00222.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee Y, Kim KH, Kim DG, Cho HJ, Kim Y, Rheey J, et al. FoxM1 promotes stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PLoS One. 2015;10(10):e0137703. https://doi.org/10.1371/journal.pone.0137703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mehta S, Huillard E, Kesari S, Maire CL, Golebiowski D, Harrington EP, et al. The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. Cancer Cell. 2011;19(3):359–71. https://doi.org/10.1016/j.ccr.2011.01.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kowalski-Chauvel A, Gouaze-Andersson V, Baricault L, Martin E, Delmas C, Toulas C, et al. Alpha6-integrin regulates FGFR1 expression through the ZEB1/YAP1 transcription complex in glioblastoma stem cells resulting in enhanced proliferation and stemness. Cancers (Basel). 2019;11(3). https://doi.org/10.3390/cancers11030406.Demonstrates the crosstalk between alpha6-integrin and FGFR1 which is another target implicated in radioresistance.

  45. • Gouaze-Andersson V, Delmas C, Taurand M, Martinez-Gala J, Evrard S, Mazoyer S, et al. FGFR1 induces glioblastoma radioresistance through the PLCgamma/Hif1alpha pathway. Cancer Res. 2016;76(10):3036–44. https://doi.org/10.1158/0008-5472.CAN-15-2058. Demonstrates the implication of FGFR1 in radioresistance of glioblastoma.

    Article  CAS  PubMed  Google Scholar 

  46. • Gouaze-Andersson V, Gherardi MJ, Lemarie A, Gilhodes J, Lubrano V, Arnauduc F, et al. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker. Oncotarget. 2018;9(60):31637–49. https://doi.org/10.18632/oncotarget.25827. Identification of FGFR1 as a potential target for radiosensitization of glioblastoma stem cells.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Schafer N, Gielen GH, Rauschenbach L, Kebir S, Till A, Reinartz R, et al. Longitudinal heterogeneity in glioblastoma: moving targets in recurrent versus primary tumors. J Transl Med. 2019;17(1):96. https://doi.org/10.1186/s12967-019-1846-y. Demonstrates a high incidence of dissimilar target expression status in clinical samples from primary versus recurrent glioblastoma and the need for second-line therapy to verify target expression status.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li X, Martinez-Ledesma E, Zhang C, Gao F, Zheng S, Ding J, et al. Tie2-FGFR1 interaction induces adaptive PI3K inhibitor resistance by upregulating aurora A/PLK1/CDK1 signaling in glioblastoma. Cancer Res. 2019;79(19):5088–101. https://doi.org/10.1158/0008-5472.CAN-19-0325.

    Article  CAS  PubMed  Google Scholar 

  49. Man J, Yu X, Huang H, Zhou W, Xiang C, Huang H, et al. Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell. 2018;22(1):104–18.e6. https://doi.org/10.1016/j.stem.2017.10.005.

    Article  CAS  PubMed  Google Scholar 

  50. Yahyanejad S, King H, Iglesias VS, Granton PV, Barbeau LM, van Hoof SJ, et al. NOTCH blockade combined with radiation therapy and temozolomide prolongs survival of orthotopic glioblastoma. Oncotarget. 2016;7(27):41251–64. https://doi.org/10.18632/oncotarget.9275.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang W, Liu Y, Gao R, Yu H, Sun T. HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett. 2018;415:164–76. https://doi.org/10.1016/j.canlet.2017.12.005.

    Article  CAS  PubMed  Google Scholar 

  52. Michaelsen SR, Staberg M, Pedersen H, Jensen KE, Majewski W, Broholm H, et al. VEGF-C sustains VEGFR2 activation under bevacizumab therapy and promotes glioblastoma maintenance. Neuro-Oncology. 2018;20(11):1462–74. https://doi.org/10.1093/neuonc/noy103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang X, Wang X, Xu R, Ji J, Xu Y, Han M, et al. YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J Transl Med. 2018;16(1):79. https://doi.org/10.1186/s12967-018-1451-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xie B, Zhang L, Hu W, Fan M, Jiang N, Duan Y, et al. Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells. Redox Biol. 2019;24:101189. https://doi.org/10.1016/j.redox.2019.101189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69–82. https://doi.org/10.1016/j.ccr.2006.11.020.

    Article  CAS  PubMed  Google Scholar 

  56. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumor-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17(2):170–82. https://doi.org/10.1038/ncb3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leblond MM, Peres EA, Helaine C, Gerault AN, Moulin D, Anfray C, et al. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget. 2017;8(42):72597–612. https://doi.org/10.18632/oncotarget.19994.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell. 2008;13(1):69–80. https://doi.org/10.1016/j.ccr.2007.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumor-initiating cells. Nature. 2006;444(7120):761–5. https://doi.org/10.1038/nature05349.

    Article  CAS  PubMed  Google Scholar 

  60. Rampazzo E, Persano L, Pistollato F, Moro E, Frasson C, Porazzi P, et al. Wnt activation promotes neuronal differentiation of glioblastoma. Cell Death Dis. 2013;4:e500. https://doi.org/10.1038/cddis.2013.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhuang W, Li B, Long L, Chen L, Huang Q, Liang Z. Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity. Int J Cancer. 2011;129(11):2720–31. https://doi.org/10.1002/ijc.25975.

    Article  CAS  PubMed  Google Scholar 

  62. Charles N, Holland EC. Brain tumor treatment increases the number of cancer stem-like cells. Expert Rev Neurother. 2009;9(10):1447–9. https://doi.org/10.1586/ern.09.91.

    Article  PubMed  Google Scholar 

  63. Li Y, Li A, Glas M, Lal B, Ying M, Sang Y, et al. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci U S A. 2011;108(24):9951–6. https://doi.org/10.1073/pnas.1016912108.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Berezovsky AD, Poisson LM, Cherba D, Webb CP, Transou AD, Lemke NW, et al. Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation. Neoplasia. 2014;16(3):193–206, e19–25. https://doi.org/10.1016/j.neo.2014.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim JK, Jeon HM, Jeon HY, Oh SY, Kim EJ, Jin X, et al. Conversion of glioma cells to glioma stem-like cells by angiocrine factors. Biochem Biophys Res Commun. 2018;496(4):1013–8. https://doi.org/10.1016/j.bbrc.2017.02.076.

    Article  CAS  PubMed  Google Scholar 

  66. Fessler E, Borovski T, Medema JP. Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Mol Cancer. 2015;14:157. https://doi.org/10.1186/s12943-015-0420-3.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dahan P, Martinez Gala J, Delmas C, Monferran S, Malric L, Zentkowski D, et al. Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance. Cell Death Dis. 2014;5:e1543. https://doi.org/10.1038/cddis.2014.509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153(1):139–52. https://doi.org/10.1016/j.cell.2013.02.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baisiwala S, Auffinger B, Caragher SP, Shireman JM, Ahsan R, Lee G, et al. Chemotherapeutic stress induces transdifferentiation of glioblastoma cells to endothelial cells and promotes vascular mimicry. Stem Cells Int. 2019;2019:6107456. https://doi.org/10.1155/2019/6107456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. • Deshors P, Toulas C, Arnauduc F, Malric L, Siegfried A, Nicaise Y, et al. Ionizing radiation induces endothelial transdifferentiation of glioblastoma stem-like cells through the Tie2 signaling pathway. Cell Death Dis. 2019;10(11):816. https://doi.org/10.1038/s41419-019-2055-6. Importance of radio-induced plasticity of glioblastoma stem cells and identification of a potential target for radiosensitization of glioblastoma stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lombardi G, De Salvo GL, Brandes AA, Eoli M, Ruda R, Faedi M, et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomized, controlled, phase 2 trial. Lancet Oncol. 2019;20(1):110–9. https://doi.org/10.1016/S1470-2045(18)30675-2.

    Article  CAS  PubMed  Google Scholar 

  72. Laprie A, Catalaa I, Cassol E, McKnight TR, Berchery D, Marre D, et al. Proton magnetic resonance spectroscopic imaging in newly diagnosed glioblastoma: predictive value for the site of postradiotherapy relapse in a prospective longitudinal study. Int J Radiat Oncol Biol Phys. 2008;70(3):773–81. https://doi.org/10.1016/j.ijrobp.2007.10.039.

    Article  PubMed  Google Scholar 

  73. Laruelo A, Chaari L, Tourneret JY, Batatia H, Ken S, Rowland B, et al. Spatio-spectral regularization to improve magnetic resonance spectroscopic imaging quantification. NMR Biomed. 2016;29(7):918–31. https://doi.org/10.1002/nbm.3532.

    Article  PubMed  Google Scholar 

  74. Deviers A, Ken S, Filleron T, Rowland B, Laruelo A, Catalaa I, et al. Evaluation of the lactate-to-N-acetyl-aspartate ratio defined with magnetic resonance spectroscopic imaging before radiation therapy as a new predictive marker of the site of relapse in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2014;90(2):385–93. https://doi.org/10.1016/j.ijrobp.2014.06.009.

    Article  CAS  PubMed  Google Scholar 

  75. Ken S, Deviers A, Filleron T, Catalaa I, Lotterie JA, Khalifa J, et al. Voxel-based evidence of perfusion normalization in glioblastoma patients included in a phase I-II trial of radiotherapy/tipifarnib combination. J Neuro-Oncol. 2015;124(3):465–73. https://doi.org/10.1007/s11060-015-1860-8.

    Article  CAS  Google Scholar 

  76. Laprie A, Ken S, Filleron T, Lubrano V, Vieillevigne L, Tensaouti F, et al. Dose-painting multicenter phase III trial in newly diagnosed glioblastoma: the SPECTRO-GLIO trial comparing arm A standard radiochemotherapy to arm B radiochemotherapy with simultaneous integrated boost guided by MR spectroscopic imaging. BMC Cancer. 2019;19(1):167. https://doi.org/10.1186/s12885-019-5317-x.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Garnier D, Meehan B, Kislinger T, Daniel P, Sinha A, Abdulkarim B, et al. Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro-Oncology. 2018;20(2):236–48. https://doi.org/10.1093/neuonc/nox142.

    Article  CAS  PubMed  Google Scholar 

  78. Huang T, Kim CK, Alvarez AA, Pangeni RP, Wan X, Song X, et al. MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma. Cancer Cell. 2017;32(6):840–55.e8. https://doi.org/10.1016/j.ccell.2017.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shah SS, Rodriguez GA, Musick A, Walters WM, de Cordoba N, Barbarite E, et al. Targeting glioblastoma stem cells with 2-deoxy-D-glucose (2-DG) potentiates radiation-induced unfolded protein response (UPR). Cancers (Basel). 2019;11(2). https://doi.org/10.3390/cancers11020159.

  80. Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V, et al. Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 2018;37(4):522–33. https://doi.org/10.1038/onc.2017.351.

    Article  CAS  PubMed  Google Scholar 

  81. Ye F, Zhang Y, Liu Y, Yamada K, Tso JL, Menjivar JC, et al. Protective properties of radio-chemoresistant glioblastoma stem cell clones are associated with metabolic adaptation to reduced glucose dependence. PLoS One. 2013;8(11):e80397. https://doi.org/10.1371/journal.pone.0080397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lizarte Neto FS, Rodrigues AR, Trevisan FA, de Assis Cirino ML, Matias C, Pereira-da-Silva G, et al. microRNA-181d associated with the methylation status of the MGMT gene in Glioblastoma multiforme cancer stem cells submitted to treatments with ionizing radiation and temozolomide. Brain Res. 2019;1720:146302. https://doi.org/10.1016/j.brainres.2019.146302.

    Article  CAS  PubMed  Google Scholar 

  83. Demaria S, Coleman CN, Formenti SC. Radiotherapy: changing the game in immunotherapy. Trends Cancer. 2016;2(6):286–94. https://doi.org/10.1016/j.trecan.2016.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumor immunogenicity. Nat Commun. 2017;8:15618. https://doi.org/10.1038/ncomms15618.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rehman AA, Elmore KB, Mattei TA. The effects of alternating electric fields in glioblastoma: current evidence on therapeutic mechanisms and clinical outcomes. Neurosurg Focus. 2015;38(3):E14. https://doi.org/10.3171/2015.1.FOCUS14742.

    Article  PubMed  Google Scholar 

  86. Trusheim J, Dunbar E, Battiste J, Iwamoto F, Mohile N, Damek D, et al. A state-of-the-art review and guidelines for tumor treating fields treatment planning and patient follow-up in glioblastoma. CNS Oncol. 2017;6(1):29–43. https://doi.org/10.2217/cns-2016-0032.

    Article  CAS  PubMed  Google Scholar 

  87. •• Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–16. https://doi.org/10.1001/jama.2017.18718. The addition of TTFields to standard treatment with temozolomide for patients with glioblastoma results in improved progression-free and overall survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pinel S, Thomas N, Boura C, Barberi-Heyob M. Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Adv Drug Deliv Rev. 2019;138:344–57. https://doi.org/10.1016/j.addr.2018.10.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Gouazé-Andersson PhD.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouazé-Andersson, V., Cohen-Jonathan Moyal, E. New Avenues in Radiotherapy of Glioblastoma: from Bench to Bedside. Curr Treat Options Neurol 22, 45 (2020). https://doi.org/10.1007/s11940-020-00654-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11940-020-00654-0

Keywords

Navigation