Skip to main content
Log in

Sleep, Circadian Rhythms, and Epilepsy

  • Epilepsy (E Waterhouse, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

There is a known interrelationship between sleep and epilepsy. This review highlights the recent findings regarding interactions between sleep and circadian rhythms and the manifestations of epilepsy and surgical treatments for refractory epilepsy.

Recent findings

CLOCK gene expression may be reduced within the epileptogenic focus in patients with refractory epilepsy. Interictal epileptiform discharges during NREM and especially REM sleep may lateralize to the epileptogenic hemisphere. Intracranial video EEG monitoring and EEG from implanted responsive neurostimulator devices confirm scalp video EEG findings of a nocturnal peak for interictal epileptiform discharges. Successful epilepsy surgery may improve sleep macrostructure and quality.

Summary

Sleep outcomes in people with epilepsy undergoing epilepsy surgery and neurostimulator implantation may provide innovative understandings into the associations between sleep and epilepsy. These associations may then provide novel therapeutic options targeting sleep and circadian pathways to improve seizure control and improve the quality of life for patients with this debilitating disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANT:

Anterior nucleus of the thalamus

DBS:

Deep brain stimulation

IED:

Interictal epileptiform discharges

NREM:

Non-rapid eye movement sleep

N1:

NREM stage 1 sleep

N2:

NREM stage 2 sleep

N3:

NREM stage 3 sleep or slow wave sleep

RNS:

Responsive neurostimulation

VNS:

Vagus nerve stimulation

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zach MMaK, R. National and state estimates of the numbers of adults and children with active epilepsy - Unites States, 2015. In: MMWR Morb Mortal Wkly Rep. 2017. 2017.

  2. Leonardi M, Ustun TB. The global burden of epilepsy. Epilepsia. 2002;43(Suppl 6):21–5.

    Article  Google Scholar 

  3. Ismayilova V, Demir AU, Tezer FI. Subjective sleep disturbance in epilepsy patients at an outpatient clinic: a questionnaire-based study on prevalence. Epilepsy Res. 2015;115:119–25. https://doi.org/10.1016/j.eplepsyres.2015.06.009.

    Article  PubMed  Google Scholar 

  4. Staniszewska A, Maka A, Religioni U, Olejniczak D. Sleep disturbances among patients with epilepsy. Neuropsychiatr Dis Treat. 2017;13:1797–803. https://doi.org/10.2147/ndt.s136868.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nayak CS, Mariyappa N, Majumdar KK, Ravi GS, Prasad PD, Nagappa M, et al. NREM sleep and antiepileptic medications modulate epileptiform activity by altering cortical synchrony. Clinical EEG and neuroscience. 2018;2017:1550059417747436. https://doi.org/10.1177/1550059417747436.

    Article  Google Scholar 

  6. Malow BA, Aldrich MS. Localizing value of rapid eye movement sleep in temporal lobe epilepsy. Sleep Med. 2000;1(1):57–60.

    Article  CAS  Google Scholar 

  7. Busek P, Buskova J, Nevsimalova S. Interictal epileptiform discharges and phasic phenomena of REM sleep. Epileptic disorders : international epilepsy journal with videotape. 2010;12(3):217–21. https://doi.org/10.1684/epd.2010.0319.

    Article  Google Scholar 

  8. Okanari K, Baba S, Otsubo H, Widjaja E, Sakuma S, Go CY, et al. Rapid eye movement sleep reveals epileptogenic spikes for resective surgery in children with generalized interictal discharges. Epilepsia. 2015;56(9):1445–53. https://doi.org/10.1111/epi.13081.

    Article  PubMed  Google Scholar 

  9. Rocamora R, Andrzejak RG, Jimenez-Conde J, Elger CE. Sleep modulation of epileptic activity in mesial and neocortical temporal lobe epilepsy: a study with depth and subdural electrodes. Epilepsy & behavior : E&B. 2013;28(2):185–90. https://doi.org/10.1016/j.yebeh.2013.04.010.

    Article  Google Scholar 

  10. Scarlatelli-Lima AV, Sukys-Claudino L, Watanabe N, Guarnieri R, Walz R, Lin K. How do people with drug-resistant mesial temporal lobe epilepsy sleep? A clinical and video-EEG with EOG and submental EMG for sleep staging study. eNeurologicalSci. 2016;4:34–41. https://doi.org/10.1016/j.ensci.2016.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mendez M, Radtke RA. Interactions between sleep and epilepsy. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 2001;18(2):106–27.

    Article  CAS  Google Scholar 

  12. Frauscher B, von Ellenrieder N, Dubeau F, Gotman J. EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans. Epilepsia. 2016;57(6):879–88. https://doi.org/10.1111/epi.13389.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Campana C, Zubler F, Gibbs S, de Carli F, Proserpio P, Rubino A, et al. Suppression of interictal spikes during phasic rapid eye movement sleep: a quantitative stereo-electroencephalography study. J Sleep Res. 2017;26(5):606–13. https://doi.org/10.1111/jsr.12533.

    Article  CAS  PubMed  Google Scholar 

  14. • Quigg M, Clayburn H, Straume M, Menaker M, Bertram EH 3rd. Effects of circadian regulation and rest-activity state on spontaneous seizures in a rat model of limbic epilepsy. Epilepsia. 2000;41(5):502–9 This is an important study that demonstrated that a circadian pattern of seizure occurrence in a rat model of limbic epilepsy.

    Article  CAS  Google Scholar 

  15. Minecan D, Natarajan A, Marzec M, Malow B. Relationship of epileptic seizures to sleep stage and sleep depth. Sleep. 2002;25(8):899–904.

    Article  Google Scholar 

  16. Pavlova MK, Shea SA, Scheer FA, Bromfield EB. Is there a circadian variation of epileptiform abnormalities in idiopathic generalized epilepsy? Epilepsy & behavior : E&B. 2009;16(3):461–7. https://doi.org/10.1016/j.yebeh.2009.08.022.

    Article  Google Scholar 

  17. Herman ST, Walczak TS, Bazil CW. Distribution of partial seizures during the sleep--wake cycle: differences by seizure onset site. Neurology. 2001;56(11):1453–9.

    Article  CAS  Google Scholar 

  18. Mirzoev A, Bercovici E, Stewart LS, Cortez MA, Snead OC 3rd, Desrocher M. Circadian profiles of focal epileptic seizures: a need for reappraisal. Seizure. 2012;21(6):412–6. https://doi.org/10.1016/j.seizure.2012.03.014.

    Article  PubMed  Google Scholar 

  19. Bazil CW, Walczak TS. Effects of sleep and sleep stage on epileptic and nonepileptic seizures. Epilepsia. 1997;38(1):56–62.

    Article  CAS  Google Scholar 

  20. Durazzo TS, Spencer SS, Duckrow RB, Novotny EJ, Spencer DD, Zaveri HP. Temporal distributions of seizure occurrence from various epileptogenic regions. Neurology. 2008;70(15):1265–71. https://doi.org/10.1212/01.wnl.0000308938.84918.3f.

    Article  CAS  PubMed  Google Scholar 

  21. Karafin M, St Louis EK, Zimmerman MB, Sparks JD, Granner MA. Bimodal ultradian seizure periodicity in human mesial temporal lobe epilepsy. Seizure. 2010;19(6):347–51. https://doi.org/10.1016/j.seizure.2010.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Quigg M. Circadian rhythms: interactions with seizures and epilepsy. Epilepsy Res. 2000;42(1):43–55.

    Article  CAS  Google Scholar 

  23. •• Spencer DC, Sun FT, Brown SN, Jobst BC, Fountain NB, Wong VS, et al. Circadian and ultradian patterns of epileptiform discharges differ by seizure-onset location during long-term ambulatory intracranial monitoring. Epilepsia. 2016;57(9):1495–502. https://doi.org/10.1111/epi.13455This large study carefully characterizes circadian patterns of interictal epileptiform discharges and timing of seizures based on long-term intracranial data from patients with implanted RNS for refractory epilepsy.

    Article  CAS  PubMed  Google Scholar 

  24. Schapel GJ, Beran RG, Kennaway DL, McLoughney J, Matthews CD. Melatonin response in active epilepsy. Epilepsia. 1995;36(1):75–8.

    Article  CAS  Google Scholar 

  25. Molina-Carballo A, Acuna-Castroviejo D, Rodriguez-Cabezas T, Munoz-Hoyos A. Effects of febrile and epileptic convulsions on daily variations in plasma melatonin concentration in children. J Pineal Res. 1994;16(1):1–9.

    Article  CAS  Google Scholar 

  26. Bazil CW, Short D, Crispin D, Zheng W. Patients with intractable epilepsy have low melatonin, which increases following seizures. Neurology. 2000;55(11):1746–8.

    Article  CAS  Google Scholar 

  27. de Lima E, Soares JM Jr, del Carmen Sanabria Garrido Y, Gomes Valente S, Priel MR, Chada Baracat E, et al. Effects of pinealectomy and the treatment with melatonin on the temporal lobe epilepsy in rats. Brain Res. 2005;1043(1–2):24–31. https://doi.org/10.1016/j.brainres.2005.02.027.

    Article  CAS  PubMed  Google Scholar 

  28. Jain S, Besag FM. Does melatonin affect epileptic seizures? Drug Saf. 2013;36(4):207–15. https://doi.org/10.1007/s40264-013-0033-y.

    Article  CAS  PubMed  Google Scholar 

  29. Elkhayat HA, Hassanein SM, Tomoum HY, Abd-Elhamid IA, Asaad T, Elwakkad AS. Melatonin and sleep-related problems in children with intractable epilepsy. Pediatr Neurol. 2010;42(4):249–54. https://doi.org/10.1016/j.pediatrneurol.2009.11.002.

    Article  PubMed  Google Scholar 

  30. Goldberg-Stern H, Oren H, Peled N, Garty BZ. Effect of melatonin on seizure frequency in intractable epilepsy: a pilot study. J Child Neurol. 2012;27(12):1524–8. https://doi.org/10.1177/0883073811435916.

    Article  PubMed  Google Scholar 

  31. Sheldon SH. Pro-convulsant effects of oral melatonin in neurologically disabled children. Lancet (London, England). 1998;351(9111):1254. https://doi.org/10.1016/s0140-6736(05)79321-1.

    Article  CAS  Google Scholar 

  32. Cho CH. Molecular mechanism of circadian rhythmicity of seizures in temporal lobe epilepsy. Front Cell Neurosci. 2012;6:55. https://doi.org/10.3389/fncel.2012.00055.

    Article  PubMed  PubMed Central  Google Scholar 

  33. • Li P, Fu X, Smith NA, Ziobro J, Curiel J, Tenga MJ, et al. Loss of CLOCK results in dysfunction of brain circuits underlying focal epilepsy. Neuron. 2017;96(2):387–401 e6. https://doi.org/10.1016/j.neuron.2017.09.044 This study demonstrated evidence that CLOCK gene expression may be reduced within the epileptogenic focus in patients with refractory epilepsy.

    Article  CAS  PubMed  Google Scholar 

  34. Adachi N, Alarcon G, Binnie CD, Elwes RD, Polkey CE, Reynolds EH. Predictive value of interictal epileptiform discharges during non-REM sleep on scalp EEG recordings for the lateralization of epileptogenesis. Epilepsia. 1998;39(6):628–32.

    Article  CAS  Google Scholar 

  35. Ochi A, Hung R, Weiss S, Widjaja E, To T, Nawa Y, et al. Lateralized interictal epileptiform discharges during rapid eye movement sleep correlate with epileptogenic hemisphere in children with intractable epilepsy secondary to tuberous sclerosis complex. Epilepsia. 2011;52(11):1986–94. https://doi.org/10.1111/j.1528-1167.2011.03198.x.

    Article  PubMed  Google Scholar 

  36. Legros B, Bazil CW. Effects of antiepileptic drugs on sleep architecture: a pilot study. Sleep Med. 2003;4(1):51–5.

    Article  Google Scholar 

  37. • Jain SV, Glauser TA. Effects of epilepsy treatments on sleep architecture and daytime sleepiness: an evidence-based review of objective sleep metrics. Epilepsia. 2013;55(1):26–37. https://doi.org/10.1111/epi.12478This is an extensive review which critically evaluates the literature evaulating the effects on AEDs on objective sleep measures.

    Article  CAS  PubMed  Google Scholar 

  38. van Golde EG, Gutter T, de Weerd AW. Sleep disturbances in people with epilepsy; prevalence, impact and treatment. Sleep Med Rev. 2011;15(6):357–68. https://doi.org/10.1016/j.smrv.2011.01.002.

    Article  PubMed  Google Scholar 

  39. Maganti R, Hausman N, Koehn M, Sandok E, Glurich I, Mukesh BN. Excessive daytime sleepiness and sleep complaints among children with epilepsy. Epilepsy & behavior : E&B. 2006;8(1):272–7. https://doi.org/10.1016/j.yebeh.2005.11.002.

    Article  Google Scholar 

  40. Giorelli AS, Passos P, Carnaval T, Gomes Mda M. Excessive daytime sleepiness and epilepsy: a systematic review. Epilepsy research and treatment 2013;2013:629469. doi:https://doi.org/10.1155/2013/629469, 9.

    Article  Google Scholar 

  41. Gutter T, Brouwer OF, de Weerd AW. Subjective sleep disturbances in children with partial epilepsy and their effects on quality of life. Epilepsy & behavior : E&B. 2013;28(3):481–8. https://doi.org/10.1016/j.yebeh.2013.06.022.

    Article  Google Scholar 

  42. Kaleyias J, Cruz M, Goraya JS, Valencia I, Khurana DS, Legido A, et al. Spectrum of polysomnographic abnormalities in children with epilepsy. Pediatr Neurol. 2008;39(3):170–6. https://doi.org/10.1016/j.pediatrneurol.2008.06.002.

    Article  PubMed  Google Scholar 

  43. • Carrion MJ, Nunes ML, Martinez JV, Portuguez MW, da Costa JC. Evaluation of sleep quality in patients with refractory seizures who undergo epilepsy surgery. Epilepsy & behavior : E&B. 2010;17(1):120–3. https://doi.org/10.1016/j.yebeh.2009.11.008This is prospective study evaluating sleep quality in patients with refractory mesial temporal lobe epilepsy before and after temporal lobectomy.

    Article  Google Scholar 

  44. • Serafini A, Kuate C, Gelisse P, Velizarova R, Gigli GL, Coubes P, et al. Sleep before and after temporal lobe epilepsy surgery. Seizure. 2012;21(4):260–5. https://doi.org/10.1016/j.seizure.2012.01.007This study prospectively evaluated objective sleep parameters before and up to 2 years after temporal lobectomy.

    Article  PubMed  Google Scholar 

  45. •• Zanzmera P, Shukla G, Gupta A, Goyal V, Srivastava A, Garg A, et al. Effect of successful epilepsy surgery on subjective and objective sleep parameters--a prospective study. Sleep Med. 2013;14(4):333–8. https://doi.org/10.1016/j.sleep.2012.11.017 This is the first study to prospectively measure objective and subjective parameters before and after temporal lobectomy.

    Article  PubMed  Google Scholar 

  46. Nobili L, Francione S, Mai R, Cardinale F, Castana L, Tassi L, et al. Surgical treatment of drug-resistant nocturnal frontal lobe epilepsy. Brain : a Journal of Neurology. 2007;130(Pt 2):561–73. https://doi.org/10.1093/brain/awl322.

    Article  CAS  Google Scholar 

  47. McCormick L, Nielsen T, Ptito M, Ptito A, Villemure JG, Vera C, et al. Sleep in right hemispherectomized patients: evidence of electrophysiological compensation. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology. 2000;111(8):1488–97.

    Article  CAS  Google Scholar 

  48. Foldvary-Schaefer N, Stephenson L, Bingaman W. Resolution of obstructive sleep apnea with epilepsy surgery? Expanding the relationship between sleep and epilepsy. Epilepsia. 2008;49(8):1457–9. https://doi.org/10.1111/j.1528-1167.2008.01677.x.

    Article  PubMed  Google Scholar 

  49. Romero-Osorio O, Gil-Tamayo S, Narino D, Rosselli D. Changes in sleep patterns after vagus nerve stimulation, deep brain stimulation or epilepsy surgery: systematic review of the literature. Seizure. 2018;56:4–8. https://doi.org/10.1016/j.seizure.2018.01.022.

    Article  PubMed  Google Scholar 

  50. Malow BA, Edwards J, Marzec M, Sagher O, Ross D, Fromes G. Vagus nerve stimulation reduces daytime sleepiness in epilepsy patients. Neurology. 2001;57(5):879–84.

    Article  CAS  Google Scholar 

  51. Rizzo P, Beelke M, De Carli F, Canovaro P, Nobili L, Robert A, et al. Chronic vagus nerve stimulation improves alertness and reduces rapid eye movement sleep in patients affected by refractory epilepsy. Sleep. 2003;26(5):607–11.

    Article  Google Scholar 

  52. Galli R, Bonanni E, Pizzanelli C, Maestri M, Lutzemberger L, Giorgi FS, et al. Daytime vigilance and quality of life in epileptic patients treated with vagus nerve stimulation. Epilepsy & Behavior : E&B. 2003;4(2):185–91.

    Article  Google Scholar 

  53. Hallbook T, Lundgren J, Kohler S, Blennow G, Stromblad LG, Rosen I. Beneficial effects on sleep of vagus nerve stimulation in children with therapy resistant epilepsy. European Journal of Paediatric Neurology : EJPN : Official Journal of the European Paediatric Neurology Society. 2005;9(6):399–407. https://doi.org/10.1016/j.ejpn.2005.08.004.

    Article  Google Scholar 

  54. St Louis EK, Faber K. Reversible sleep-related stridor during vagus nerve stimulation. Epileptic Disorders : International Epilepsy Journal With Videotape. 2010;12(1):76–80. https://doi.org/10.1684/epd.2010.0294.

    Article  Google Scholar 

  55. Gschliesser V, Hogl B, Frauscher B, Brandauer E, Poewe W, Luef G. Mode of vagus nerve stimulation differentially affects sleep related breathing in patients with epilepsy. Seizure. 2009;18(5):339–42. https://doi.org/10.1016/j.seizure.2008.12.003.

    Article  PubMed  Google Scholar 

  56. Malow BA, Edwards J, Marzec M, Sagher O, Fromes G. Effects of vagus nerve stimulation on respiration during sleep: a pilot study. Neurology. 2000;55(10):1450–4.

    Article  CAS  Google Scholar 

  57. Marzec M, Edwards J, Sagher O, Fromes G, Malow BA. Effects of vagus nerve stimulation on sleep-related breathing in epilepsy patients. Epilepsia. 2003;44(7):930–5.

    Article  Google Scholar 

  58. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908. https://doi.org/10.1111/j.1528-1167.2010.02536.x.

    Article  Google Scholar 

  59. Voges BR, Schmitt FC, Hamel W, House PM, Kluge C, Moll CK, et al. Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia. 2015;56(8):e99–e103. https://doi.org/10.1111/epi.13045.

    Article  PubMed  Google Scholar 

  60. Kinnear KM, Warner NM, Haltiner AM, Doherty MJ. Continuous monitoring devices and seizure patterns by glucose, time and lateralized seizure onset. Epilepsy & Behavior Case Reports. 2018;10:65–70. https://doi.org/10.1016/j.ebcr.2018.03.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. DeWolfe DO.

Ethics declarations

Conflict of Interest

Joseph T. Daley reports no conflicts of interest. Jennifer L. DeWolfe reports grants from Marinus Pharmaceuticals, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Take-home points

• Interictal epileptiform discharges have a nocturnal peak in focal and generalized epilepsies

• Interictal epileptiform discharges during REM sleep may help lateralize the hemisphere containing the seizure onset zone in people with intractable epilepsy

• CLOCK gene expression may be reduced within the epileptogenic focus in patients with refractory epilepsy

• Lower intensity settings on Vagus nerve stimulators may improve daytime sleepiness and vigilance in people with refractory epilepsy while higher intensity settings and rapid cycling may increase risk of sleep apnea

• Sleep architecture, daytime sleepiness, and sleep quality may be improved in patients who become seizure free following focal cortical resection

This article is part of the Topical Collection on Epilepsy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daley, J.T., DeWolfe, J.L. Sleep, Circadian Rhythms, and Epilepsy. Curr Treat Options Neurol 20, 47 (2018). https://doi.org/10.1007/s11940-018-0534-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-018-0534-1

Keywords

Navigation