Skip to main content

Advertisement

Log in

Current Treatment Options for Peripheral Nerve Hyperexcitability Syndromes

  • Neuromuscular Disorders (C Fournier, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

Peripheral nerve hyperexcitability (PNH) syndromes are divided into primary and secondary groups based on the presence or absence of demonstrable peripheral nerve disease. In this review, we systematically evaluate the evidence for current therapies and supportive managements based on autoimmune, paraneoplastic, and genetic components in pathophysiology reported in the literature.

Recent findings

Current therapy options are based on symptomatic management as well as focusing the underlying immune/genetic/paraneoplastic pathology by immunosuppressants, chemotherapy, and surgery.

Summary

Further research is desired to provide treatment options geared specifically towards addressing PNH. Supportive care can also be an area for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Benatar M, Chapman KM, Rutkove SB. Repetitive nerve stimulation for the evaluation of peripheral nerve hyperexcitability. J Neurol Sci Netherlands. 2004;221:47–52.

    Article  Google Scholar 

  2. Küçükali CI, Kürtüncü M, Akçay Hİ, Tüzün E, Öge AE. Peripheral nerve hyperexcitability syndromes. Rev. Neurosci [Internet]. De Gruyter; 2015 [cited 2018 Jan 10];26:239–51. Available from: https://www.degruyter.com/view/j/revneuro.2015.26.issue-2/revneuro-2014-0066/revneuro-2014-0066.xml

  3. Khadilkar SV, Yadav RS. PBA. Peripheral nerve hyperexcitability syndromes. Syndr Neuromuscul Disord Springer, Singapore [Internet]. 2018; Available from: https://doi.org/10.1007/978-981-10-5361-0_26

  4. •Sawlani K, Katirji B. Peripheral nerve hyperexcitability syndromes. A recent detailed review of pathophysiology along with diagnostic guidelines:1437–50.

  5. Ahmed A, Simmons Z. Isaacs syndrome: a review. Muscle Nerve [Internet]. 2015;52:5–12. Available from: http://doi.wiley.com/10.1002/mus.24632

  6. Hart IK, Maddison P, Newsom-Davis J, Vincent A, Mills KR. Phenotypic variants of autoimmune peripheral nerve hyperexcitability.

  7. Irani SR, Vincent A. Voltage-gated potassium channel-complex autoimmunity and associated clinical syndromes. Handb Clin Neurol Netherlands. 2016;133:185–97.

    Article  Google Scholar 

  8. Demirbas S, Aykan MB, Zengin H, Mazman S, Saglam K. Morvan syndrome: a rare cause of syndrome of inappropriate antidiuretic hormone secretion. Clujul Med Romania. 2017;90:353–5.

    Article  Google Scholar 

  9. Hurst RL, Hobson-Webb LD. Therapeutic implications of peripheral nerve hyperexcitability in muscle cramping: a retrospective review. J Clin Neurophysiol. 2016;33:560–3.

    Article  PubMed  Google Scholar 

  10. Josephs KA, Silber MH, Fealey RD, Nippoldt TB, Auger RG, Vernino S. Neurophysiologic studies in Morvan syndrome. J Clin Neurophysiol. 2004;

  11. Isaacs H, Heffron JJA. The syndrome of ‘continuous muscle-fiber activity’ cured: further studies. J Neurol Neurosurg & Psychiatry [Internet]. 1974;37:1231 LP-1235. Available from: http://jnnp.bmj.com/content/37/11/1231.abstract

  12. •Song J, Jing S, Quan C, Lu J, Qiao X, Qiao K, et al. Isaacs syndrome with CASPR2 antibody: a series of three cases. J Clin Neurosci [Internet]. This article provides clinical cases along with discssion on autoimmunity model that can be seen with PNH syndrome. 2017;41:63–6. https://doi.org/10.1016/j.jocn.2017.02.063.

  13. Tahmoush AJ, Alonso RJ, Tahmoush GP, Heiman-Patterson TD. Cramp-fasciculation syndrome: a treatable hyperexcitable peripheral nerve disorder. Neurology [Internet]. 1991;41:1021–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1648679

  14. Maddison P. Neuromyotonia. Clin Neurophysiol. 2006;117:2118–27.

    Article  PubMed  Google Scholar 

  15. Abou-Zeid E, Boursoulian LJ, Metzer WS, Gundogdu B. Morvan syndrome: a case report and review of the literature. J Clin Neuromuscul Dis [Internet]. 2012;13:214–27. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed10&AN=2012322100 http://nt2yt7px7u.search.serialssolutions.com/?sid=OVID:Embase&genre=article&id=pmid:&id=doi:10.1097%2FCND.0b013e31822b1977&issn=1522-0443&volume=13&issue=4&spage=21

  16. Merchut MP. Management of voltage-gated potassium channel antibody disorders. Neurol Clin [Internet]. Elsevier Ltd.; 2010;28:941–59. Available from: https://doi.org/10.1016/j.ncl.2010.03.024

  17. Caress JB, Walker FO. The spectrum of ectopic motor nerve behavior: from fasciculations to neuromyotonia. Neurologist. 2002;8:41–6.

    Article  PubMed  Google Scholar 

  18. Hayat GR, Kulkantrakorn K, Campbell WW, Giuliani MJ. Neuromyotonia: autoimmune pathogenesis and response to immune modulating therapy. J Neurol Sci. 2000;181:38–43.

    Article  PubMed  CAS  Google Scholar 

  19. Sharma AK, Kaur M, Paul M. Morvan’s syndrome with anti contactin associated protein like 2-voltage gated potassium channel antibody presenting with syndrome of inappropriate antidiuretic hormone secretion. J Neurosci Rural Pract [Internet]. 2016;7:577–9. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006472/

  20. Imam I, Edwards S, Hanemann CO. Acquired neuromyotonia following upper respiratory tract infection: a case report. Cases J. 2009;

  21. O’Brien TJ, Gates P. Isaac’s syndrome: report of a case responding to valproic acid. Clin Exp Neurol Australia. 1994;31:52–60.

    Google Scholar 

  22. Vasilescu C. Hereditary motor and sensory neuropathy. Clinical, genetic and electrodiagnostic studies. Rom J Neurol Psychiatry [Internet]. 1993;31:207—219. Available from: http://europepmc.org/abstract/MED/8011484

  23. Toosy AT, Burbridge SE, Pitkanen M, Loyal AS, Akanuma N, Laing H, et al. Functional imaging correlates of fronto-temporal dysfunction in Morvan’s syndrome. J. Neurol. Neurosurg. Psychiatry. England; 2008. p. 734–5.

  24. Barber PA, Anderson NE, Vincent A. Morvan’s syndrome associated with voltage-gated K+ channel antibodies. Neurology United States. 2000;54:771–2.

    Article  CAS  Google Scholar 

  25. Gonzalez G, Barros G, Russi ME, Nuñez A, Scavone C. Acquired neuromyotonia in childhood: case report and review. Pediatr Neurol. 2008;38:61–3.

    Article  PubMed  Google Scholar 

  26. Celebisoy N, Colakoglu Z, Akbaba Y, Yüceyar N. Continuous muscle fiber activity: a case treated with acetazolamide. J Neurol Neurosurg Psychiatry [Internet]. 1998;64:256–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2169931&tool=pmcentrez&rendertype=abstract

  27. Liewluck T, Klein CJ, Jones LK. Cramp-fasciculation syndrome in patients with and without neural autoantibodies. Muscle and Nerve. 2014.

  28. Dhand UK. Isaacs’ syndrome: clinical and electrophysiological response to gabapentin. Muscle and Nerve. 2006;34:646–50.

    Article  PubMed  Google Scholar 

  29. Patel R, Dickenson AH. Mechanisms of the gabapentinoids and α2δ-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect. 2016;4:1–13.

    Article  CAS  Google Scholar 

  30. Nishioka K, Hoshino Y, Kanai K, Ueno S, Nakazato T, Takanashi M, et al. Case of Morvan syndrome with anti-Ma2/Ta antibodies. Clin Exp Neuroimmunol. 2016;7:369–72.

    Article  Google Scholar 

  31. Orza F. Boswell M V, Rosenberg SK, Neuropathic pain: review of mechanisms and pharmacologic management. 2000;14:15–23.

  32. Nishioka K, Kanai K, Hattori N. Paraneoplastic neuromyotonia due to lung carcinoma and invisible muscle cramps evaluated using ultrasonography. J Neurooncol [Internet]. Springer US; 2017;134:243–4. Available from: http://link.springer.com/10.1007/s11060-017-2501-1

  33. Khealani BA. Cramp fasciculation syndrome: a peripheral nerve hyperexcitability disorder. Pakistan J Neurol Sci Pakistan J Neurol Sci (PJNS [Internet]. [cited 2018 Jan 10];9. Available from: http://ecommons.aku.edu/pjns

  34. Poyraz M, Matur Z, Aysal F, Tüzün E, Hanoğlu L, Öge AE. Clinical, electrophysiological, and serological evaluation of patients with cramp-fasciculation syndrome. Noropsikiyatri Ars. 2017;54:183–6.

    Google Scholar 

  35. Kim NH, Vincent A, Irani SR, Kim SE, Lee KW, Park KS. Long-term clinical course with voltage-gated potassium channel antibody in Morvan’s syndrome. J Neurol. 2013;260:2407–8.

    Article  PubMed  Google Scholar 

  36. Ganos C, Münchau A, Bäumer T, Gerloff C, Magnus T. Seventy years of episodic stiffness: an unusual case of neuromyotonia. Mov Disord [Internet]. Wiley Subscription Services, Inc., A Wiley Company; 2011;26:1360–1. Available from: https://doi.org/10.1002/mds.23505

  37. Oskarsson B, Moore D, Mozaffar T, Ravits J, Wiedau-Pazos M, Parziale N, et al. Mexiletine for the treatment of muscle cramps in ALS: a randomized double-blind crossover trial (S38.004). Neurology [Internet]. 2017;88. Available from: http://n.neurology.org/content/88/16_Supplement/S38.004.abstract

  38. Weiss MD, Macklin EA, Simmons Z, Knox AS, Greenblatt DJ, Atassi N, et al. A randomized trial of mexiletine in ALS: safety and effects on muscle cramps and progression. Neurology United States. 2016;86:1474–81.

    Article  CAS  Google Scholar 

  39. Logigian EL, Martens WB, Moxley RT 4th, McDermott MP, Dilek N, Wiegner AW, et al. Mexiletine is an effective antimyotonia treatment in myotonic dystrophy type 1. Neurology United States. 2010;74:1441–8.

    Article  CAS  Google Scholar 

  40. Abgrall G, Demeret S, Rohaut B, Leu-Semenescu S, Arnulf I. Status dissociatus and disturbed dreaming in a patient with Morvan syndrome plus myasthenia gravis. Sleep Med [Internet]. Elsevier B.V.; 2015;16:894–6. Available from: https://doi.org/10.1016/j.sleep.2015.03.017

  41. England JD, Juel VC. Basics With The Experts AANEM 59th Annual Meeting. 2012.

    Google Scholar 

  42. Newsom-davis J, Mills KR. Immunological associations of acquired neuromyotonia (Isaacs’ syndrome): report of five cases and literature review. Brain. 1993;116:453–69.

    Article  PubMed  Google Scholar 

  43. Gonzalez Primomo SN, Blas L, Bertotti AC, Ameri C. Urinary manifestations in Isaacs’s syndrome. Our experience in 8 cases. Neurourol Urodyn. 2018;37:496–500.

    Article  PubMed  CAS  Google Scholar 

  44. Maskery M, Chhetri SK, Dayanandan R, Gall C, Emsley HCA. Morvan syndrome: a case report with patient narrative and video. Neurohospitalist. 2016;6:32–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Macaron G, El Rassy E, Koussa S. Morvan syndrome secondary to thymic carcinoma in a patient with systemic lupus erythematosus. Case Rep Neurol Med [Internet]. 2016;2016:1–3. Available from: http://www.hindawi.com/journals/crinm/2016/9142486/

  46. Oh SJ. Treatment and management of disorders of the neuromuscular junction [internet]. Neuromuscul. Disord. Elsevier Ltd.; 2011. Available from: https://doi.org/10.1016/B978-1-4377-0372-6.00017-7

  47. Tow S, Carozza D, Barker K. The functional impairments in a patient with Morvan’s syndrome: a case report. PM R J Inj Funct Rehabil [Internet]. American Academy of Physical Medicine and Rehabilitation; 2017;2–5. Available from: http://search.ebscohost.com/login.aspx?direct=true&db=cmedm&AN=29222073&site=ehost-live

  48. Ong E, Viaccoz A, Ducray F, Pérol M, Cavillon G, Rogemond V, et al. Dramatic improvement after rituximab in a patient with paraneoplastic treatment-refractory Morvan syndrome associated with anti-CASPR2 antibodies. Eur J Neurol. 2013;20:96–7.

    Article  Google Scholar 

  49. Laurencin C, André-Obadia N, Camdessanché J-P, Mauguière F, Ong E, Vukusic S, et al. Peripheral small fiber dysfunction and neuropathic pain in patients with Morvan syndrome. Neurology [Internet]. 2015;85:2076 LP-2078. Available from: http://n.neurology.org/content/85/23/2076.abstract

  50. Lancaster E, Huijbers MGM, Bar V, Boronat A, Wong A, Martinez-Hernandez E, et al. Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann Neurol. United States. 2011;69:303–11.

    Article  CAS  Google Scholar 

  51. Skeie GO, Apostolski S, Evoli A, Gilhus NE, Illa I, Harms L, et al. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol. 2010;17:893–902.

    Article  PubMed  CAS  Google Scholar 

  52. Sinha S, Newsom-Davis J, Mills K, Byrne N, Lang B, Vincent A. Autoimmune etiology for acquired neuromyotonia (Isaacs’ syndrome). Lancet (London, England). England; 1991;338:75–7.

  53. Newsom-Davis J, Mills KR. Immunological associations of acquired neuromyotonia (Isaacs’ syndrome). Report of five cases and literature review. Brain. England; 1993;116 (Pt 2:453–69.

  54. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain. 2010;133:2734–48.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Antozzi C, Frassoni C, Vincent A, Regondi MC, Andreetta F, Bernasconi P, et al. Sequential antibodies to potassium channels and glutamic acid decarboxylase in neuromyotonia. Neurology [Internet]. 2005;64:1290 LP-1293. Available from: http://n.neurology.org/content/64/7/1290.abstract

  56. Cottrell DA, Blackmore KJ, Fawcett PRW, Birchall D, Vincent A, Barnard S, et al. Sub-acute presentation of Morvan’s syndrome after thymectomy. J Neurol Neurosurg & Psychiatry [Internet]. 2004;75:1504 LP-1505. Available from: http://jnnp.bmj.com/content/75/10/1504.abstract

  57. Diaz-Manera J, Rojas-Garcia R, Gallardo E, Juarez C, Martinez-Domeno A, Martinez-Ramirez S, et al. Antibodies to AChR, MuSK and VGKC in a patient with myasthenia gravis and Morvan’s syndrome. Nat Clin Pract Neurol. England. 2007;3:405–10.

    Article  Google Scholar 

  58. Sonderen A Van, Ariño H, Petit-pedrol M, Leypoldt F, Körtvélyessy P, Lancaster E, et al. The clinical spectrum of Caspr2 antibody-associated disease. 2016.

  59. Madrid A, Gil-Peralta A, Gil-Neciga E, Gonzalez JR, Jarrin S. Morvan’s fibrillary chorea: remission after plasmapheresis. J Neurol. Germany. 1996;243:350–3.

    Article  CAS  Google Scholar 

  60. Shillito P, Molenaar PC, Vincent A, Leys K, Zheng W, van den Berg RJ, et al. Acquired neuromyotonia: evidence for autoantibodies directed against K+ channels of peripheral nerves. Ann Neurol. United States; 1995;38:714–22.

  61. Buckley C, Oger J, Clover L, Tuzun E, Carpenter K, Jackson M, et al. Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann Neurol. United States. 2001;50:73–8.

    Article  CAS  Google Scholar 

  62. Feasby T, Banwell B, Benstead T, Bril V, Brouwers M, Freedman M, et al. Guidelines on the use of intravenous immune globulin for neurologic conditions. Transfus Med Rev. 2007;21:57–107.

    Article  Google Scholar 

  63. Galie E, Renna R, Plantone D, Pace A, Marino M, Jandolo B, et al. Paraneoplastic Morvan’s syndrome following surgical treatment of recurrent thymoma: a case report. Oncol Lett. 2016;12:2716–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. van den Berg JS, van Engelen BG, Boerman RH, de Baets MH. Acquired neuromyotonia: superiority of plasma exchange over high-dose intravenous human immunoglobulin. J Neurol Germany. 1999:623–5.

  65. Ishii A, Hayashi A, Ohkoshi N, Oguni E, Maeda M, Ueda Y, et al. Clinical evaluation of plasma exchange and high dose intravenous immunoglobulin in a patient with Isaacs’ syndrome. J. Neurol. Neurosurg. Psychiatry. 1994. p. 840–2.

  66. Elovaara I, Apostolski S, Van Doorn P, Gilhus NE, Hietaharju A, Honkaniemi J, et al. EFNS guidelines for the use of intravenous immunoglobulin in treatment of neurological diseases: EFNS task force on the use of intravenous immunoglobulin in treatment of neurological diseases. Eur J Neurol. 2008;15:893–908.

    Article  PubMed  CAS  Google Scholar 

  67. Bernard C, Frih H, Pasquet F, Kerever S, Jamilloux Y, Tronc F, et al. Thymoma associated with autoimmune diseases: 85 cases and literature review. Autoimmun Rev. [Internet]. Elsevier B.V.; 2016;15:82–92. Available from: https://doi.org/10.1016/j.autrev.2015.09.005

  68. Vincent A, Irani SR. Caspr2 antibodies in patients with thymomas. J Thorac Oncol. United States. 2010;5:S277–80.

    Article  Google Scholar 

  69. Evoli A, Minicuci GM, Vitaliani R, Battaglia A, Della Marca G, Lauriola L, et al. Paraneoplastic diseases associated with thymoma. J Neurol. 2007;254:756–62.

    Article  PubMed  Google Scholar 

  70. Rana SS, Ramanathan RS, Small G, Adamovich B. Paraneoplastic Isaacs’ syndrome: a case series and review of the literature. J Clin Neuromuscul Dis. 2012;13:228–33.

    Article  PubMed  Google Scholar 

  71. Nagappa M, Mahadevan A, Sinha S, Bindu PS, Mathuranath PS, Bineesh C, et al. Fatal morvan syndrome associated with myasthenia gravis. Neurologist. 2017;22:29–33.

    Article  PubMed  Google Scholar 

  72. Fleisher J, Richie M, Price R, Scherer S, Dalmau J, Lancaster E. Acquired neuromyotonia heralding recurrent thymoma in myasthenia gravis. JAMA Neurol. 2013;70:1311–4.

    PubMed  PubMed Central  Google Scholar 

  73. Caress JB, Abend WK, Preston DC, Logigian EL. A case of Hodgkin’s lymphoma producing neuromyotonia. Neurology [Internet]. 1997;49:258 LP-259. Available from: http://n.neurology.org/content/49/1/258.abstract

  74. Rubio-Agusti I, Perez-Miralles F, Sevilla T, Muelas N, Chumillas MJ, Mayordomo F, et al. Peripheral nerve hyperexcitability. Neurology [Internet]. 2011;76:172 LP-178. Available from: http://n.neurology.org/content/76/2/172.abstract

  75. April KT, Walji R. The state of research on complementary and alternative medicine in pediatric rheumatology. Rheum Dis Clin North Am [Internet]. Elsevier Ltd.; 2011;37:85–94. Available from: https://doi.org/10.1016/j.rdc.2010.11.011

  76. Wang R, Li X, Zhou S, Zhang X, Yang K, Li X. Manual acupuncture for myofascial pain syndrome: a systematic review and meta-analysis. Acupunct Med. 2017;35:241–50.

    Article  PubMed  Google Scholar 

  77. Tsuji DH, Awade R, Posso IP. Cutaneous application of silicone wafers containing carbon microcoils: efficacy in relieving chronic muscle tension and pain. J Altern Complement Med [Internet]. 2015;21:439–43. Available from: http://online.liebertpub.com/doi/10.1089/acm.2014.0235

  78. De Gregori M, Muscoli C, Schatman ME, Stallone T, Intelligente F, Rondanelli M, et al. Combining pain therapy with lifestyle: the role of personalized nutrition and nutritional supplements according to the simpar feed your destiny approach. J Pain Res. 2016;9:1179–89.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hu X, Huang F, Szymusiak M, Liu Y, Wang ZJ. Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/calmodulin-dependent protein kinase II alpha activity. J Pharmacol Exp Ther [Internet]. 2015;352:420–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25515789

  80. Tall JM, Raja SN. Dietary constituents as novel therapies for pain. Clin J Pain United States. 2004;20:19–26.

    Article  Google Scholar 

  81. Satija A, Ahmed SM, Gupta R, Ahmed A, Rana SPS, Singh SP, et al. Breast cancer pain management—a review of current & novel therapies. Indian J Med Res India. 2014;139:216–25.

    Google Scholar 

  82. Arjmandi BH, Khalil DA, Lucas EA, Smith BJ, Sinichi N, Hodges SB, et al. Soy protein may alleviate osteoarthritis symptoms. Phytomedicine Germany. 2004;11:567–75.

    Article  CAS  Google Scholar 

  83. Thomas AJ, Ismail R, Taylor-Swanson L, Cray L, Schnall JG, Mitchell ES, et al. Effects of isoflavones and amino acid therapies for hot flashes and co-occurring symptoms during the menopausal transition and early postmenopause: a systematic review. Maturitas Ireland. 2014;78:263–76.

    Article  CAS  Google Scholar 

  84. Lauro F, Giancotti LA, Ilari S, Dagostino C, Gliozzi M, Morabito C, et al. Inhibition of spinal oxidative stress by bergamot polyphenolic fraction attenuates the development of morphine induced tolerance and hyperalgesia in mice. PLoS One. United States; 2016;11:e0156039.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiesha Ahmed MD.

Ethics declarations

Conflict of Interest

Cheran Elangovan, Adeolu Morawo, and Aiesha Ahmed declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuromuscular Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elangovan, C., Morawo, A. & Ahmed, A. Current Treatment Options for Peripheral Nerve Hyperexcitability Syndromes. Curr Treat Options Neurol 20, 23 (2018). https://doi.org/10.1007/s11940-018-0510-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-018-0510-9

Keywords

Navigation