Skip to main content
Log in

Cerebral Microhemorrhages: Significance, Associations, Diagnosis, and Treatment

  • Cerebrovascular Disorders (HP Adams, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Cerebrovascular pathologies expose patients to both ischemic and hemorrhagic risks. Given the progressive aging of populations, more and more patients will experience both types of events during their lifetime. The generalization of brain magnetic resonance imaging as a first-line imaging modality for evaluating patients with cerebrovascular diseases has led to the need to manage new types of imaging information about the cerebral tissue, such as the presence, location, and number of cerebral microhemorrhages (CMs). Originally, CMs were thought to be merely spatially localized distortions of the image, mostly secondary to foci of iron deposition within the brain parenchyma. During the past 20 years, however, innumerable research studies have demonstrated that these small foci of signal loss, presumably related to a circumscribed rupture of small vessels, may be used to better estimate the balance between hemorrhagic and ischemic risks. We are now entering the era of personalized medicine, in which treatment decisions are adjusted for each patient according to various genetic, biological, or imaging data. Therefore, integrating CMs into patient management at the individual level will be crucial in the future. This review aims to deliver some clues to interpret the impact of CMs on our clinical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain. 2007;130(Pt 8):1988–2003.

    Article  PubMed  Google Scholar 

  2. Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol. 1999;20(4):637–42.

    CAS  PubMed  Google Scholar 

  3. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8(2):165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heo SH, Lee D, Lee D, Chang DI. Differentiation of a symptomatic cerebral microbleed from silent microbleeds. Int J Stroke. 2014;9(1):E2.

    Article  PubMed  Google Scholar 

  5. Jeon SB, Kang DW, Cho AH, et al. Initial microbleeds at MR imaging can predict recurrent intracerebral hemorrhage. J Neurol. 2007;254(4):508–12.

    Article  PubMed  Google Scholar 

  6. Carhuapoma JR, Mayer SA, Hanley DF. Intracerebral hemorrhage: Cambridge Medicine. 2010.

    Google Scholar 

  7. Imaizumi T, Inamura S, Nomura T. Contribution of deep microbleeds to stroke recurrence: differences between patients with past deep intracerebral hemorrhages and lacunar infarctions. J Stroke Cerebrovasc Dis. 2015;24(8):1855–64.

    Article  PubMed  Google Scholar 

  8. Charidimou A, Kakar P, Fox Z, Werring DJ. Cerebral microbleeds and recurrent stroke risk: systematic review and meta-analysis of prospective ischemic stroke and transient ischemic attack cohorts. Stroke. 2013;44(4):995–1001.

    Article  PubMed  Google Scholar 

  9. Akoudad S, Portegies ML, Koudstaal PJ, et al. Cerebral microbleeds are associated with an increased risk of stroke: The Rotterdam study. Circulation. 2015;132(6):509–16. This population-based study demonstrated the yield of CM number and location in determining the risk of incident ischemic or hemorrhagic stroke.

    Article  PubMed  Google Scholar 

  10. Ridker PM, Cook NR, Lee I-M, et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005;352(13):1293–304.

    Article  CAS  PubMed  Google Scholar 

  11. Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(12):3754–832.

    Article  PubMed  Google Scholar 

  12. Yip S, Benavente O. Antiplatelet agents for stroke prevention. Neurotherapeutics. 2011;8(3):475–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hart RG, Tonarelli SB, Pearce LA. Avoiding central nervous system bleeding during antithrombotic therapy: recent data and ideas. Stroke. 2005;36(7):1588–93.

    Article  PubMed  Google Scholar 

  14. International Stroke Trial Collaborative Group. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. Lancet. 1997;349(9065):1569–81.

    Article  Google Scholar 

  15. Wang Z, Xu C, Wang P, Wang Y, Xin H. Combined clopidogrel-aspirin treatment for high risk TIA or minor stroke does not increase cerebral microbleeds. Neurol Res. 2015;37(11):993–7.

    Article  CAS  PubMed  Google Scholar 

  16. Linn J, Herms J, Dichgans M, et al. Subarachnoid hemosiderosis and superficial cortical hemosiderosis in cerebral amyloid angiopathy. AJNR Am J Neuroradiol. 2008;29(1):184–6.

    Article  CAS  PubMed  Google Scholar 

  17. Charidimou A, Linn J, Vernooij MW, et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain. 2015;138(Pt 8):2126–39.

    Article  PubMed  Google Scholar 

  18. Viswanathan A, Rakich SM, Engel C, et al. Antiplatelet use after intracerebral hemorrhage. Neurology. 2006;66(2):206–9.

    Article  CAS  PubMed  Google Scholar 

  19. Biffi A, Halpin A, Towfighi A, et al. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology. 2010;75(8):693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Charidimou A, Peeters AP, Jager R, et al. Cortical superficial siderosis and intracerebral hemorrhage risk in cerebral amyloid angiopathy. Neurology. 2013;81(19):1666–73. This study illustrates that superficial cortical siderosis may further increase the risk of recurrent ICH in patients with a history of lobar ICH and multiple lobar ICH.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Arima H, Tzourio C, Anderson C, et al. Effects of perindopril-based lowering of blood pressure on intracerebral hemorrhage related to amyloid angiopathy: the PROGRESS trial. Stroke. 2010;41(2):394–6.

    Article  CAS  PubMed  Google Scholar 

  22. European Heart Rhythm A, European Association for Cardio-Thoracic S, Camm AJ, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J. 2010;31(19):2369–429.

    Article  Google Scholar 

  23. Apostolakis S, Lane DA, Guo Y, Buller H, Lip GY. Performance of the HEMORR 2 HAGES, ATRIA, and HAS-BLED bleeding risk-prediction scores in nonwarfarin anticoagulated atrial fibrillation patients. J Am Coll Cardiol. 2013;61(3):386–7.

    Article  PubMed  Google Scholar 

  24. Eckman MH, Wong LK, Soo YO, et al. Patient-specific decision-making for warfarin therapy in nonvalvular atrial fibrillation: how will screening with genetics and imaging help? Stroke. 2008;39(12):3308–15.

    Article  PubMed  Google Scholar 

  25. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.

    Article  CAS  PubMed  Google Scholar 

  26. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.

    Article  CAS  PubMed  Google Scholar 

  27. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.

    Article  CAS  PubMed  Google Scholar 

  28. Stroke Risk in Atrial Fibrillation Working G. Independent predictors of stroke in patients with atrial fibrillation: a systematic review. Neurology. 2007;69(6):546–54.

    Article  Google Scholar 

  29. Cervera A, Amaro S, Chamorro A. Oral anticoagulant-associated intracerebral hemorrhage. J Neurol. 2012;259(2):212–24.

    Article  CAS  PubMed  Google Scholar 

  30. Vermeer SE, Algra A, Franke CL, Koudstaal PJ, Rinkel GJ. Long-term prognosis after recovery from primary intracerebral hemorrhage. Neurology. 2002;59(2):205–9. This up-to-date review discusses the care of patients with oral anticoagulation–related ICH.

    Article  CAS  PubMed  Google Scholar 

  31. Eckman MH, Rosand J, Knudsen KA, Singer DE, Greenberg SM. Can patients be anticoagulated after intracerebral hemorrhage? A decision analysis. Stroke. 2003;34(7):1710–6.

    Article  PubMed  Google Scholar 

  32. Kuramatsu JB, Gerner ST, Schellinger PD, et al. Anticoagulant reversal, blood pressure levels, and anticoagulant resumption in patients with anticoagulation-related intracerebral hemorrhage. JAMA. 2015;313(8):824–36.

    Article  CAS  PubMed  Google Scholar 

  33. Wilson D, Jager HR, Werring DJ. Anticoagulation for atrial fibrillation in patients with cerebral microbleeds. Curr Atheroscler Rep. 2015;17(8):524.

    Article  Google Scholar 

  34. Hemphill 3rd JC, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.

    Article  PubMed  Google Scholar 

  35. Reddy VY, Sievert H, Halperin J, et al. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: a randomized clinical trial. JAMA. 2014;312(19):1988–98.

    Article  PubMed  Google Scholar 

  36. Turc G, Sallem A, Moulin S, et al. Microbleed status and 3-month outcome after intravenous thrombolysis in 717 patients with acute ischemic stroke. Stroke. 2015;46(9):2458–63.

    Article  CAS  PubMed  Google Scholar 

  37. Charidimou A, Shoamanesh A, Wilson D, et al. Cerebral microbleeds and postthrombolysis intracerebral hemorrhage risk updated meta-analysis. Neurology. 2015;85(11):927–4.

    Article  PubMed  Google Scholar 

  38. Cai J, Fu J, Yan S, Hu H, Lin C. Clinical outcome in acute ischemic stroke patients with microbleeds after thrombolytic therapy: a meta-analysis. Medicine (Baltimore). 2015;94(52):e2379.

    Article  Google Scholar 

  39. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995, 333(24):1581-1587.

  40. Badhiwala JH, Nassiri F, Alhazzani W, et al. Endovascular thrombectomy for acute ischemic stroke: a meta-analysis. JAMA. 2015;314(17):1832–43.

    Article  CAS  PubMed  Google Scholar 

  41. Leppala JM, Virtamo J, Fogelholm R, Albanes D, Heinonen OP. Different risk factors for different stroke subtypes: association of blood pressure, cholesterol, and antioxidants. Stroke. 1999;30(12):2535–40.

    Article  CAS  PubMed  Google Scholar 

  42. Amarenco P, Bogousslavsky J, Callahan 3rd A, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355(6):549–59.

    Article  CAS  PubMed  Google Scholar 

  43. Goldstein LB, Amarenco P, Szarek M, et al. Hemorrhagic stroke in the stroke prevention by aggressive reduction in cholesterol levels study. Neurology. 2008;70(24 Pt 2):2364–70.

    Article  CAS  PubMed  Google Scholar 

  44. Haussen DC, Henninger N, Kumar S, Selim M. Statin use and microbleeds in patients with spontaneous intracerebral hemorrhage. Stroke. 2012;43(10):2677–81.

    Article  CAS  PubMed  Google Scholar 

  45. Romero JR, Preis SR, Beiser A, et al. Risk factors, stroke prevention treatments, and prevalence of cerebral microbleeds in the Framingham Heart Study. Stroke. 2014;45(5):1492–4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. McKinney JS, Kostis WJ. Statin therapy and the risk of intracerebral hemorrhage: a meta-analysis of 31 randomized controlled trials. Stroke. 2012;43(8):2149–56.

    Article  CAS  PubMed  Google Scholar 

  47. Lauer A, Greenberg SM, Gurol ME. Statins in intracerebral hemorrhage. Curr Atheroscler Rep. 2015;17(8):526. This up-to-date review discusses statin use after ICH.

    Article  Google Scholar 

  48. Biffi A, Devan WJ, Anderson CD, et al. Statin use and outcome after intracerebral hemorrhage: case-control study and meta-analysis. Neurology. 2011;76(18):1581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Chabriat MD, PhD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cerebrovascular Disorders

A special thank you to Dr. Myrna Rosenfeld for taking the time to review this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouvent, E., Puy, L. & Chabriat, H. Cerebral Microhemorrhages: Significance, Associations, Diagnosis, and Treatment. Curr Treat Options Neurol 18, 35 (2016). https://doi.org/10.1007/s11940-016-0418-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-016-0418-1

Keywords

Navigation