Skip to main content

Advertisement

Log in

Usefulness of PET Imaging to Guide Treatment Options in Gliomas

  • Neuro-oncology (R Soffietti, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Magnetic resonance imaging (MRI) is the gold standard guiding diagnostic and therapeutic management in glioma with its high resolution and possibility to depict blood-brain-barrier disruption when contrast medium is applied. In light of the shifting paradigms revealing distinct tumor subtypes based on the molecular and genetic characterization and increasing knowledge about the variability of glioma biology, additional imaging modalities such as positron emission tomography (PET) depicting metabolic processes gain further importance in the management of glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weller M, van den Bent M, Hopkins K, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014;15(9):e395–403. Important guideline paper.

    Article  PubMed  Google Scholar 

  2. Macdonald DR, Cascino TL, Schold Jr SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol: Off J Am Soc Clin Oncol. 1990;8:1277–80.

    CAS  Google Scholar 

  3. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol: Off J Am Soc Clin Oncol. 2010;28(11):1963–72. Important guideline paper.

    Article  Google Scholar 

  4. Som P, Atkins HL, Bandoypadhyay D, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;21(7):670–5.

    CAS  PubMed  Google Scholar 

  5. Alavi A, Dann R, Chawluk J, Alavi J, Kushner M, Reivich M. Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med. 1986;16(1):2–34.

    Article  CAS  PubMed  Google Scholar 

  6. Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32(12):1323–9.

    Article  PubMed  Google Scholar 

  7. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33(11):1972–80.

    CAS  PubMed  Google Scholar 

  8. Ishiwata K, Vaalburg W, Elsinga PH, Paans AM, Woldring MG. Comparison of L-[1-11C]methionine and L-methyl-[11C]methionine for measuring in vivo protein synthesis rates with PET. J Nucl Med. 1988;29(8):1419–27.

    CAS  PubMed  Google Scholar 

  9. Weber WA, Wester HJ, Grosu AL, et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med. 2000;27(5):542–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kratochwil C, Combs SE, Leotta K, et al. Intra-individual comparison of (1)(8)F-FET and (1)(8)F-DOPA in PET imaging of recurrent brain tumors. Neuro-Oncology. 2014;16(3):434–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Becherer A, Karanikas G, Szabo M, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging. 2003;30(11):1561–7.

    Article  CAS  PubMed  Google Scholar 

  12. Huang C, McConathy J. Radiolabeled amino acids for oncologic imaging. J Nucl Med. 2013;54(7):1007–10.

    Article  CAS  PubMed  Google Scholar 

  13. Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro-oncology. 2015. This study provides a consise review on literature available on [18F]FET and [18F]FDG in glioma. A concise overview on literature available on the two tracers.

  14. Chen W, Silverman DH, Delaloye S, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47(6):904–11.

    CAS  PubMed  Google Scholar 

  15. Youland RS, Kitange GJ, Peterson TE, et al. The role of LAT1 in (18)F-DOPA uptake in malignant gliomas. J Neurooncol. 2013;111(1):11–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Haining Z, Kawai N, Miyake K, et al. Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas. BMC Clin Pathol. 2012;12:4.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Okubo S, Zhen HN, Kawai N, Nishiyama Y, Haba R, Tamiya T. Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J Neurooncol. 2010;99(2):217–25.

    Article  CAS  PubMed  Google Scholar 

  18. Habermeier A, Graf J, Sandhofer BF, Boissel JP, Roesch F, Closs EI. System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET). Amino Acids. 2015;47(2):335–44.

    Article  CAS  PubMed  Google Scholar 

  19. Popperl G, Kreth FW, Herms J, et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nuclear Med: Off Publ Soc Nucl Med. 2006;47(3):393–403.

    Google Scholar 

  20. Jansen NL, Graute V, Armbruster L, et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging. 2012;39(6):1021–9.

    Article  CAS  PubMed  Google Scholar 

  21. Jansen NL, Suchorska B, Schwarz SB, et al. [18F]fluoroethyltyrosine-positron emission tomography-based therapy monitoring after stereotactic iodine-125 brachytherapy in patients with recurrent high-grade glioma. Mol Imaging. 2013;12:137–47.

    CAS  PubMed  Google Scholar 

  22. Jansen NL, Suchorska B, Wenter V, et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med. 2015;56(1):9–15. First study to show dynamic analysis of [18F]FET uptake via TTP analysis to provide prognostic information on outcome in HGG.

    Article  CAS  PubMed  Google Scholar 

  23. Moulin-Romsee G, D’Hondt E, de Groot T, et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging. 2007;34(12):2082–7.

    Article  PubMed  Google Scholar 

  24. Schiepers C, Chen W, Cloughesy T, Dahlbom M, Huang SC. 18F-FDOPA kinetics in brain tumors. J Nucl Med. 2007;48(10):1651–61.

    Article  PubMed  Google Scholar 

  25. Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6.

    Article  CAS  PubMed  Google Scholar 

  26. DeAngelis LM. Anaplastic glioma: how to prognosticate outcome and choose a treatment strategy. [corrected]. J Clin Oncol: Off J Am Soc Clin Oncol. 2009;27(35):5861–2.

    Article  Google Scholar 

  27. Kunz M, Thon N, Eigenbrod S, et al. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro-Oncology. 2011;13(3):307–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Herholz K, Pietrzyk U, Voges J, et al. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg. 1993;79(6):853–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kato T, Shinoda J, Oka N, et al. Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity. AJNR Am J Neuroradiol. 2008;29(10):1867–71.

    Article  CAS  PubMed  Google Scholar 

  30. Kato T, Shinoda J, Nakayama N, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol. 2008;29(6):1176–82.

    Article  CAS  PubMed  Google Scholar 

  31. Pauleit D, Floeth F, Hamacher K, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128(Pt 3):678–87.

    Article  PubMed  Google Scholar 

  32. Herholz K, Holzer T, Bauer B, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50(5):1316–22.

    Article  CAS  PubMed  Google Scholar 

  33. Popperl G, Kreth FW, Mehrkens JH, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34(12):1933–42.

    Article  PubMed  Google Scholar 

  34. Jansen NL, Schwartz C, Graute V, et al. Prediction of oligodendroglial histology and LOH 1p/19q using dynamic [(18)F]FET-PET imaging in intracranial WHO grade II and III gliomas. Neuro-Oncology. 2012;14(12):1473–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Watanabe M, Tanaka R, Takeda N. Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology. 1992;34(6):463–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hall WA, Liu H, Martin AJ, Truwit CL. Comparison of stereotactic brain biopsy to interventional magnetic-resonance-imaging-guided brain biopsy. Stereotact Funct Neurosurg. 1999;73(1–4):148–53.

    Article  CAS  PubMed  Google Scholar 

  37. Glantz MJ, Burger PC, Herndon 2nd JE, et al. Influence of the type of surgery on the histologic diagnosis in patients with anaplastic gliomas. Neurology. 1991;41(11):1741–4.

    Article  CAS  PubMed  Google Scholar 

  38. Levivier M, Goldman S, Pirotte B, et al. Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose. J Neurosurg. 1995;82(3):445–52.

    Article  CAS  PubMed  Google Scholar 

  39. Pirotte B, Goldman S, Bidaut LM, et al. Use of positron emission tomography (PET) in stereotactic conditions for brain biopsy. Acta Neurochir. 1995;134(1–2):79–82.

    Article  CAS  PubMed  Google Scholar 

  40. Pirotte B, Goldman S, Massager N, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med. 2004;45(8):1293–8.

    CAS  PubMed  Google Scholar 

  41. Pirotte B, Goldman S, David P, et al. Stereotactic brain biopsy guided by positron emission tomography (PET) with [F-18]fluorodeoxyglucose and [C-11]methionine. Acta Neurochir Suppl. 1997;68:133–8.

    CAS  PubMed  Google Scholar 

  42. Mert A, Kiesel B, Wohrer A, et al. Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas. Neurosurg Focus. 2015;38(1):E4.

    Article  PubMed  Google Scholar 

  43. Pirotte B, Acerbi F, Lubansu A, Goldman S, Brotchi J, Levivier M. PET imaging in the surgical management of pediatric brain tumors. Child Nerv Syst: ChNS : Off J Int Soc Pediatr Neurosurg. 2007;23(7):739–51.

    Article  Google Scholar 

  44. Kaplan AM, Bandy DJ, Manwaring KH, et al. Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. J Neurosurg. 1999;91(5):797–803.

    Article  CAS  PubMed  Google Scholar 

  45. Grosu AL, Weber WA, Riedel E, et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(1):64–74.

    Article  CAS  PubMed  Google Scholar 

  46. Kracht LW, Miletic H, Busch S, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res: Off J Am Assoc Cancer Res. 2004;10(21):7163–70.

    Article  CAS  Google Scholar 

  47. Munck AF, Rosenschold P, Costa J, Engelholm SA, et al. Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro-Oncology. 2015;17(5):757–63.

    Article  Google Scholar 

  48. Grosu AL, Weber WA, Franz M, et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(2):511–9.

    Article  CAS  PubMed  Google Scholar 

  49. Miwa K, Matsuo M, Ogawa S, et al. Re-irradiation of recurrent glioblastoma multiforme using 11C-methionine PET/CT/MRI image fusion for hypofractionated stereotactic radiotherapy by intensity modulated radiation therapy. Radiat Oncol. 2014;9:181.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Piroth MD, Pinkawa M, Holy R, et al. Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft … [et al]. 2012;188(4):334–9.

    Article  CAS  Google Scholar 

  51. Kosztyla R, Chan EK, Hsu F, et al. High-grade glioma radiation therapy target volumes and patterns of failure obtained from magnetic resonance imaging and 18F-FDOPA positron emission tomography delineations from multiple observers. Int J Radiat Oncol Biol Phys. 2013;87(5):1100–6.

    Article  PubMed  Google Scholar 

  52. Weber DC, Casanova N, Zilli T, et al. Recurrence pattern after [(18)F]fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma: a prospective study. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2009;93(3):586–92.

    Article  Google Scholar 

  53. Niyazi M, Jansen NL, Rottler M, Ganswindt U, Belka C. Recurrence pattern analysis after re-irradiation with bevacizumab in recurrent malignant glioma patients. Radiat Oncol. 2014;9:299.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Galldiks N, Kracht LW, Burghaus L, et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging. 2006;33(5):516–24.

    Article  CAS  PubMed  Google Scholar 

  55. Roelcke U, Wyss MT, Nowosielski M, Rudà R, Roth P, Hofer S, Galldiks N, Crippa F, Weller M, Soffietti R. Aminoacid PET to monitor chemotherapy response, and to predict seizure control and progression-free survival in WHO grade II gliomas. Neuro-Oncology. 2015 [in press].

  56. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:453–61.

    Article  PubMed  Google Scholar 

  57. Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol. 2009;22(6):633–8.

    Article  PubMed  Google Scholar 

  58. Fink J, Born D, Chamberlain MC. Pseudoprogression: relevance with respect to treatment of high-grade gliomas. Curr Treat Options in Oncol. 2011;12(3):240–52.

    Article  Google Scholar 

  59. Galldiks N, Dunkl V, Stoffels G, et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging. 2015;42(5):685–95.

    Article  CAS  PubMed  Google Scholar 

  60. Niyazi M, Jansen N, Ganswindt U, et al. Re-irradiation in recurrent malignant glioma: prognostic value of [18F]FET-PET. J Neuro-Oncol. 2012;110(3):389–95.

    Article  CAS  Google Scholar 

  61. Hutterer M, Nowosielski M, Putzer D, et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med. 2011;52:856–64.

    Article  CAS  PubMed  Google Scholar 

  62. Galldiks N, Rapp M, Stoffels G, et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging. 2013;40:22–33.

    Article  CAS  PubMed  Google Scholar 

  63. Schwarzenberg J, Czernin J, Cloughesy TF, et al. Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res: Off J Am Assoc Cancer Res. 2014;20:3550–9.

    Article  CAS  Google Scholar 

  64. Chen W, Delaloye S, Silverman DH, et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol: Off J Am Soc Clin Oncol. 2007;25(30):4714–21.

    Article  CAS  Google Scholar 

  65. Hutterer M, Hattingen E, Palm C, Proescholdt MA, Hau P. Current standards and new concepts in MRI and PET response assessment of antiangiogenic therapies in high-grade glioma patients. Neuro-Oncology. 2015;17(6):784–800. An interesting and concise overview on available imaging methods for evaluation of response assessment after antiangiogenic treatment.

    Article  PubMed  Google Scholar 

  66. Suchorska B, Jansen NL, Linn J, et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology. 2015;84(7):710–9. First prospective study to show that PET-derived biological volume prior to radiochemotherapy influences outcome in newly diagnosed glioblastoma.

    Article  CAS  PubMed  Google Scholar 

  67. Piroth MD, Pinkawa M, Holy R, et al. Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2011;80(1):176–84.

    Article  PubMed  Google Scholar 

  68. Galldiks N, Dunkl V, Kracht LW, et al. Volumetry of [(1)(1)C]-methionine positron emission tomographic uptake as a prognostic marker before treatment of patients with malignant glioma. Mol Imaging. 2012;11(6):516–27.

    CAS  PubMed  Google Scholar 

  69. Jansen NL, Suchorska B, Wenter V, et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med. 2014;55(2):198–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdana Suchorska MD.

Ethics declarations

Conflict of Interest

Bogdana Suchorska and Nathalie Lisa Albert each declare no potential conflicts of interest.

Jörg-Christian Tonn served on advisory boards and received honoraria from MerckSerono, Roche and Celldex. Dr. Tonn reports grants from Deutsche Krebshilfe.

Human and Animal Rights and Informed Consent

This article does not contain any trails with animal subjects involved. All research cited in this paper involving any of the authors (B.S. N.L.A and J.C.T) was conducted in accordance to the Helsinki Declaration of 1975 and the local Ethics Committee of the Ludwig-Maximilians University.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suchorska, B., Albert, N.L. & Tonn, JC. Usefulness of PET Imaging to Guide Treatment Options in Gliomas. Curr Treat Options Neurol 18, 4 (2016). https://doi.org/10.1007/s11940-015-0384-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-015-0384-z

Keywords

Navigation