Skip to main content

Advertisement

Log in

Cannabinoids for the Treatment of Movement Disorders

  • Movement Disorders (O Suchowersky and A Videnovic, Section Editors)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Use of cannabinoids as medications has a long history. Unfortunately, the prohibition of cannabis and its classification in 1970 as a schedule 1 drug has been a major obstacle in studying these agents in a systematic, controlled manner. The number of class 1 studies (randomized, double-blind, placebo-controlled) in patients with movement disorders is limited. Hence, it is not possible to make recommendations on the use of these cannabinoids as primary treatments for any of the movement disorders at this time. Fortunately, there is an expanding body of research in animal models of age-dependent and disease-related changes in the endocannabinoid system that is providing new targets for drug development. Moreover, there is growing evidence of a “cannabinoid entourage effect” in which a combination of cannabinoids derived from the plant are more effective than any single cannabinoid for a number of conditions. Cannabis preparations may presently offer an option for compassionate use in severe neurologic diseases, but at this point, only when standard-of-care therapy is ineffective. As more high-quality clinical data are gathered, the therapeutic application of cannabinoids will expand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Russo EB. History of cannabis and its preparations in saga, science, and sobriquet. Chem Biodivers. 2007;4(8):1614–48.

    Article  CAS  PubMed  Google Scholar 

  2. Gowers W. A manual of diseases of the nervous system. Philadelphia: P. Blakiston Son and Co.; 1888.

    Google Scholar 

  3. Kluger B et al. The therapeutic potential of cannabinoids for movement disorders. Mov Disord. 2015;30(3):313–27. Excellent review of both clinical and pre-clinical literature.

    Article  CAS  PubMed  Google Scholar 

  4. Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol. 2011;163(7):1344–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mechoulam R et al. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci. 2014;15(11):757–64.

    Article  CAS  PubMed  Google Scholar 

  6. Pertwee RG. The central neuropharmacology of psychotropic cannabinoids. Pharmacol Ther. 1988;36(2–3):189–261.

    Article  CAS  PubMed  Google Scholar 

  7. Egertova M, Elphick MR. Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol. 2000;422(2):159–71.

    Article  CAS  PubMed  Google Scholar 

  8. Van Laere K et al. Gender-dependent increases with healthy aging of the human cerebral cannabinoid-type 1 receptor binding using [(18)F]MK-9470 PET. Neuroimage. 2008;39(4):1533–41.

    Article  PubMed  Google Scholar 

  9. Fernandez-Ruiz J et al. Prospects for cannabinoid therapies in basal ganglia disorders. Br J Pharmacol. 2011;163(7):1365–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Van Laere K et al. Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med. 2010;51(9):1413–7.

    Article  PubMed  Google Scholar 

  11. Garcia-Arencibia M, Garcia C, Fernandez-Ruiz J. Cannabinoids and Parkinson’s disease. CNS Neurol Disord Drug Targets. 2009;8(6):432–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hurley MJ, Mash DC, Jenner P. Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain. J Neural Transm. 2003;110(11):1279–88.

    Article  CAS  PubMed  Google Scholar 

  13. Walsh S et al. Loss of cannabinoid CB1 receptor expression in the 6-hydroxydopamine-induced nigrostriatal terminal lesion model of Parkinson’s disease in the rat. Brain Res Bull. 2010;81(6):543–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lanciego JL et al. Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis. J Psychopharmacol. 2011;25(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez-Ruiz J et al. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci. 2007;28(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  16. Szabo B, Schlicker E. Effects of cannabinoids on neurotransmission. Handb Exp Pharmacol. 2005;168:327–65.

    Article  CAS  PubMed  Google Scholar 

  17. Julian MD et al. Neuroanatomical relationship between type 1 cannabinoid receptors and dopaminergic systems in the rat basal ganglia. Neuroscience. 2003;119(1):309–18.

    Article  CAS  PubMed  Google Scholar 

  18. Engler B et al. Effects of exogenous and endogenous cannabinoids on GABAergic neurotransmission between the caudate-putamen and the globus pallidus in the mouse. J Pharmacol Exp Ther. 2006;316(2):608–17.

    Article  CAS  PubMed  Google Scholar 

  19. Sanudo-Pena MC, Tsou K, Walker JM. Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci. 1999;65(6–7):703–13.

    Article  CAS  PubMed  Google Scholar 

  20. Freiman I, Szabo B. Cannabinoids depress excitatory neurotransmission between the subthalamic nucleus and the globus pallidus. Neuroscience. 2005;133(1):305–13.

    Article  CAS  PubMed  Google Scholar 

  21. Polissidis A et al. The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently. Int J Neuropsychopharmacol. 2013;16(2):393–403.

    Article  CAS  PubMed  Google Scholar 

  22. Drews E, Schneider M, Koch M. Effects of the cannabinoid receptor agonist WIN 55,212-2 on operant behavior and locomotor activity in rats. Pharmacol Biochem Behav. 2005;80(1):145–50.

    Article  CAS  PubMed  Google Scholar 

  23. Rodvelt KR et al. WIN-55,212-2 and SR-141716A alter nicotine-induced changes in locomotor activity, but do not alter nicotine-evoked [3H]dopamine release. Life Sci. 2007;80(4):337–44.

    Article  CAS  PubMed  Google Scholar 

  24. Sanudo-Pena MC et al. Activational role of cannabinoids on movement. Eur J Pharmacol. 2000;391(3):269–74.

    Article  CAS  PubMed  Google Scholar 

  25. Long LE et al. A behavioural comparison of acute and chronic Delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice. Int J Neuropsychopharmacol. 2010;13(7):861–76.

    Article  CAS  PubMed  Google Scholar 

  26. Blankman JL, Cravatt BF. Chemical probes of endocannabinoid metabolism. Pharmacol Rev. 2013;65(2):849–71.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kathuria S et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003;9(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  28. Piomelli D et al. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev. 2006;12(1):21–38.

    Article  CAS  PubMed  Google Scholar 

  29. Chaperon F, Thiebot MH. Behavioral effects of cannabinoid agents in animals. Crit Rev Neurobiol. 1999;13:243–81.

    CAS  PubMed  Google Scholar 

  30. Meschler JP, Howlett AC, Madras BK. Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology (Berl). 2001;156(1):79–85.

    Article  CAS  Google Scholar 

  31. Brotchie JM. Adjuncts to dopamine replacement: a pragmatic approach to reducing the problem of dyskinesia in Parkinson’s disease. Mov Disord. 1998;13(6):871–6.

    Article  CAS  PubMed  Google Scholar 

  32. Fernandez-Espejo E et al. Experimental parkinsonism alters anandamide precursor synthesis, and functional deficits are improved by AM404: a modulator of endocannabinoid function. Neuropsychopharmacology. 2004;29(6):1134–42.

    Article  CAS  PubMed  Google Scholar 

  33. Kreitzer AC, Malenka RC. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature. 2007;445(7128):643–7.

    Article  CAS  PubMed  Google Scholar 

  34. Sanudo-Pena MC et al. Cannabinoid effects in basal ganglia in a rat model of Parkinson’s disease. Neurosci Lett. 1998;248(3):171–4.

    Article  CAS  PubMed  Google Scholar 

  35. Segovia G et al. Effects of CB1 cannabinoid receptor modulating compounds on the hyperkinesia induced by high-dose levodopa in the reserpine-treated rat model of Parkinson’s disease. Mov Disord. 2003;18(2):138–49.

    Article  PubMed  Google Scholar 

  36. van Vliet SA et al. Therapeutic effects of Delta9-THC and modafinil in a marmoset Parkinson model. Eur Neuropsychopharmacol. 2008;18(5):383–9.

    Article  PubMed  Google Scholar 

  37. Fernandez-Espejo E et al. Cannabinoid CB1 antagonists possess antiparkinsonian efficacy only in rats with very severe nigral lesion in experimental parkinsonism. Neurobiol Dis. 2005;18(3):591–601.

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Arencibia M et al. Enhanced striatal glutamate release after the administration of rimonabant to 6-hydroxydopamine-lesioned rats. Neurosci Lett. 2008;438(1):10–3.

    Article  CAS  PubMed  Google Scholar 

  39. Gonzalez S et al. Effects of rimonabant, a selective cannabinoid CB1 receptor antagonist, in a rat model of Parkinson’s disease. Brain Res. 2006;1073–1074:209–19.

    Article  PubMed  Google Scholar 

  40. Kelsey JE, Harris O, Cassin J. The CB(1) antagonist rimonabant is adjunctively therapeutic as well as monotherapeutic in an animal model of Parkinson’s disease. Behav Brain Res. 2009;203(2):304–7.

    Article  CAS  PubMed  Google Scholar 

  41. van der Stelt M et al. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson’s disease. FASEB J. 2005;19(9):1140–2.

    PubMed  Google Scholar 

  42. Di Marzo V et al. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J. 2000;14(10):1432–8.

    Article  PubMed  Google Scholar 

  43. Cao X et al. Blockade of cannabinoid type 1 receptors augments the antiparkinsonian action of levodopa without affecting dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys. J Pharmacol Exp Ther. 2007;323(1):318–26.

    Article  CAS  PubMed  Google Scholar 

  44. Morgese MG et al. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson’s disease: role of CB(1) and TRPV1 receptors. Exp Neurol. 2007;208(1):110–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Walsh S et al. The effects of cannabinoid drugs on abnormal involuntary movements in dyskinetic and non-dyskinetic 6-hydroxydopamine lesioned rats. Brain Res. 2010;1363:40–8.

    Article  CAS  PubMed  Google Scholar 

  46. Lastres-Becker I et al. Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington’s disease. Brain Res. 2002;929:236–42.

    Article  CAS  PubMed  Google Scholar 

  47. Lastres-Becker I et al. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse. 2002;44:23–35.

    Article  CAS  PubMed  Google Scholar 

  48. Valdeolivas S et al. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington’s disease: role of CB1 and CB2 receptors. ACS Chem Neurosci. 2012;3:400–6. Neuroprotective effects are well demonstrated in this pre-clinical study. Worth reading despite being an animal study, because studies of neuroprotection in humans are expensive, require large numbers of subjects and many years of observation.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Pintor A et al. The cannabinoid receptor agonist WIN 55,212-2 attenuates the effects induced by quinolinic acid in the rat striatum. Neuropharmacology. 2006;51:1004–12.

    Article  CAS  PubMed  Google Scholar 

  50. Sagredo O et al. Cannabinoids and neuroprotection in basal ganglia disorders. Mol Neurobiol. 2007;36:82–91.

    Article  CAS  PubMed  Google Scholar 

  51. de Lago E et al. UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntington’s disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. Eur Neuropsychopharmacol. 2006;16:7–18.

    Article  PubMed  Google Scholar 

  52. Scotter EL, Abood ME, Glass M. The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol. 2010;160(3):480–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Lastres-Becker I et al. Effects of cannabinoids in the rat model of Huntington’s disease generated by an intrastriatal injection of malonate. Neuroreport. 2003;14:813–6.

    Article  CAS  PubMed  Google Scholar 

  54. Lastres-Becker I et al. Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J Neurochem. 2003;84:1097–109.

    Article  CAS  PubMed  Google Scholar 

  55. Fox SH et al. Randomised, double-blind, placebo-controlled trial to assess the potential of cannabinoid receptor stimulation in the treatment of dystonia. Mov Disord. 2002;17:145–9.

    Article  PubMed  Google Scholar 

  56. Richter A, Löscher W. (+)-WIN 55,212-2, a novel cannabinoid receptor agonist, exerts antidystonic effects in mutant dystonic hamsters. Eur J Pharmacol. 1994;264:371–7.

    Article  CAS  PubMed  Google Scholar 

  57. Richter A, Löscher W. Effects of pharmacological manipulations of cannabinoid receptors on severity of dystonia in a genetic model of paroxysmal dyskinesia. Eur J Pharmacol. 2002;454:145–51.

    Article  CAS  PubMed  Google Scholar 

  58. Martínez-Orgado J et al. The seek of neuroprotection: introducing cannabinoids. Recent Pat CNS Drug Discov. 2007;2:131–9.

    Article  PubMed  Google Scholar 

  59. Sagredo O et al. Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur J Neurosci. 2007;26:843–51.

    Article  PubMed  Google Scholar 

  60. Garcia-Arencibia M et al. Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res. 2007;1134:162–70.

    Article  CAS  PubMed  Google Scholar 

  61. Lastres-Becker I et al. Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol Dis. 2005;19:96–107.

    Article  CAS  PubMed  Google Scholar 

  62. Carroll CB et al. Δ9-Tetrahydrocannabinol (Δ9-THC) exerts a direct neuroprotective effect in a human cell culture model of Parkinson’s disease. Neuropathol Appl Neurobiol. 2012;38:535–47.

    Article  CAS  PubMed  Google Scholar 

  63. Klein TW. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol. 2005;5:400–11.

    Article  CAS  PubMed  Google Scholar 

  64. Sagredo O et al. Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington’s disease. J Neurosci Res. 2011;89:1509–18.

    Article  CAS  PubMed  Google Scholar 

  65. Romero J, Orgado JM. Cannabinoids and neurodegenerative diseases. CNS Neurol Disord Drug Targets. 2009;8:440–50.

    Article  CAS  PubMed  Google Scholar 

  66. Beitz JM. Parkinson’s disease: a review. Front Biosci (Schol Ed). 2014;6:65–74.

    Article  Google Scholar 

  67. Chagas MH et al. Cannabidiol can improve complex sleep-related behaviours associated with rapid eye movement sleep behaviour disorder in Parkinson’s disease patients: a case series. J Clin Pharm Ther. 2014;39(5):564–6.

    Article  CAS  PubMed  Google Scholar 

  68. Lotan I et al. Cannabis (medical marijuana) treatment for motor and non-motor symptoms of Parkinson disease: an open-label observational study. Clin Neuropharmacol. 2014;37(2):41–4. Worth reading despite being an open label study because it shows the potential of cannabis to treat both motor and non-motor symptoms of PD.

    Article  PubMed  Google Scholar 

  69. Muller-Vahl KR et al. Delta 9-tetrahydrocannabinol (THC) is effective in the treatment of tics in Tourette syndrome: a 6-week randomized trial. J Clin Psychiatry. 2003;64(4):459–65.

    Article  PubMed  Google Scholar 

  70. Carroll CB et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology. 2004;63:1245–50.

    Article  CAS  PubMed  Google Scholar 

  71. Muller-Vahl KR. Cannabinoids reduce symptoms of Tourette’s syndrome. Expert Opin Pharmacother. 2003;4(10):1717–25.

    Article  PubMed  Google Scholar 

  72. Venderova K et al. Survey on cannabis use in Parkinson’s disease: subjective improvement of motor symptoms. Mov Disord. 2004;19(9):1102–6.

    Article  PubMed  Google Scholar 

  73. Chagas MH et al. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: an exploratory double-blind trial. J Psychopharmacol. 2014;28(11):1088–98.

    Article  PubMed  Google Scholar 

  74. Zuardi AW et al. Cannabidiol for the treatment of psychosis in Parkinson’s disease. J Psychopharmacol. 2009;23(8):979–83.

    Article  CAS  PubMed  Google Scholar 

  75. Uribe Roca MC, Micheli F, Viotti R. Cannabis sativa and dystonia secondary to Wilson’s disease. Mov Disord. 2005;20(1):113–5.

    Article  PubMed  Google Scholar 

  76. Sieradzan KA et al. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology. 2001;57:2108–11.

    Article  CAS  PubMed  Google Scholar 

  77. Curtis A, Clarke CE, Rickards HE. Cannabinoids for Tourette’s Syndrome. Cochrane Database Syst Rev. 2009(4):CD006565. doi:10.1002/14651858.CD006565.pub2.

  78. Muller-Vahl KR. Treatment of Tourette syndrome with cannabinoids. Behav Neurol. 2013;27(1):119–24. Excellent review of the effects of cannabinoids in treatment of Tourette’s syndrome.

    Article  PubMed  Google Scholar 

  79. Consroe P, Sandyk R, Snider SR. Open label evaluation of cannabidiol in dystonic movement disorders. Int J Neurosci. 1986;30(4):277–82.

    Article  CAS  PubMed  Google Scholar 

  80. Fox SH et al. Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord. 2002;17(6):1180–7.

    Article  PubMed  Google Scholar 

  81. Zadikoff C et al. Cannabinoid, CB1 agonists in cervical dystonia: Failure in a phase IIa randomized controlled trial. Basal Ganglia. 2011;1(2):91–5.

    Article  Google Scholar 

  82. Consroe P et al. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav. 1991;40(3):701–8.

    Article  CAS  PubMed  Google Scholar 

  83. Koppel BS et al. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2014;82:1556–63.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Bergamaschi MM et al. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr Drug Saf. 2011;6:237–49.

    Article  CAS  PubMed  Google Scholar 

  85. Cunha JM et al. Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology. 1980;21:175–85.

    Article  CAS  PubMed  Google Scholar 

  86. Frisher M et al. Assessing the impact of cannabis use on trends in diagnosed schizophrenia in the United Kingdom from 1996 to 2005. Schizophr Res. 2009;113:123–8.

    Article  PubMed  Google Scholar 

  87. Proal AC et al. A controlled family study of cannabis users with and without psychosis. Schizophr Res. 2014;152:283–8.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Volkow ND, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med. 2014;371:879.

    PubMed  Google Scholar 

  89. Zajicek JP et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. J Neurol Neurosurg Psychiatry. 2005;76:1664–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Seamon MJ et al. Medical marijuana and the developing role of the pharmacist. Am J Health Syst Pharm. 2007;64:1037–44.

    Article  CAS  PubMed  Google Scholar 

  91. Lindsay AC et al. Cannabis as a precipitant of cardiovascular emergencies. Int J Cardiol. 2005;104:230–2.

    Article  PubMed  Google Scholar 

  92. Moore BA et al. Respiratory effects of marijuana and tobacco use in a U.S. sample. J Gen Intern Med. 2005;20:33–7.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Pletcher MJ et al. ASsociation between marijuana exposure and pulmonary function over 20 years. JAMA. 2012;307:173–81.

    Article  CAS  PubMed  Google Scholar 

  94. Russo E et al. Chronic cannabis use in the Compassionate Investigational New Drug program: An examination of benefits and adverse effects of legal clinical Cannabis. J Cannabis Ther. 2002;2:3–57.

    Article  Google Scholar 

  95. Benbadis SR et al. Medical marijuana in neurology. Expert Rev Neurother. 2014;14:1453–65. Excellent review of the literature on the efficacy and safety of cannabinoids for treatment of the entire spectrum of neurological diseases.

    Article  CAS  PubMed  Google Scholar 

  96. Sanchez-Ramos J. The entourage effect of the phytocannabinoids. Ann Neurol. 2015;77:1083.

    Article  PubMed  Google Scholar 

  97. Ben-Shabat S et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol. 1998;353:23–31.

    Article  CAS  PubMed  Google Scholar 

  98. Mechoulam R, Ben-Shabat S. From gan-zi-gun-nu to anandamide and 2-arachidonoylglycerol: the ongoing story of cannabis. Nat Prod Rep. 1999;16:131–43.

    Article  CAS  PubMed  Google Scholar 

  99. Elfawal MA et al. Dried whole-plant Artemisia annua slows evolution of malaria drug resistance and overcomes resistance to artemisinin. Proc Natl Acad Sci U S A. 2015;112:821–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Sanchez-Ramos PhD, MD.

Additional information

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catlow, B., Sanchez-Ramos, J. Cannabinoids for the Treatment of Movement Disorders. Curr Treat Options Neurol 17, 39 (2015). https://doi.org/10.1007/s11940-015-0370-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-015-0370-5

Keywords

Navigation