Skip to main content

Advertisement

Log in

Treatment of Paroxysmal Dyskinesias in Children

  • Pediatric Neurology (R Boustany, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Paroxysmal dyskinesia represents a group of uncommon movement disorders that are characterized by episodes of abnormal movements arising from a baseline of normal or nearly normal movement. Recent advances in the genetics of these disorders have helped provide some unification of classification schemes and better understanding. However, the approach to treatment continues to be based on the phenotype more than the genotype. The treatment approach is primarily based on the factors that precipitate the episodes of abnormal movements. For paroxysmal kinesigenic dyskinesia (PKD) in which the spells are triggered by sudden movement, treatment with anticonvulsants that target voltage-sensitive sodium channels (e.g., carbamazepine or phenytoin) is highly effective. For paroxysmal nonkinesigenic dyskinesia (PNKD), treatment with benzodiazepines is effective in many patients. PNKD episodes are often precipitated by caffeine, ethanol, or sleep deprivation, and lifestyle modifications are often helpful. Paroxysmal exertion-induced dyskinesia (PED) is less likely to respond to medications, but the ketogenic diet or modified Atkins diet may provide benefit. As more knowledge is gained about the underlying biology of these disorders, additional treatments may emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bruno MK et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology. 2004;63(12):2280–7.

    Article  CAS  PubMed  Google Scholar 

  2. Bruno MK et al. Genotype-phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology. 2007;68(21):1782–9.

    Article  CAS  PubMed  Google Scholar 

  3. Kertesz A. Paroxysmal kinesigenic choreoathetosis. Neurology. 1967;17:680–90.

    Article  CAS  PubMed  Google Scholar 

  4. Mount LA, Reback S. Familial paroxysmal choreoathetosis. Arch Neurol Psychol. 1940;44:841–7.

    Article  Google Scholar 

  5. Demirkiran M, Jankovic J. Paroxysmal dyskinesias: clinical features and classification. Ann Neurol. 1995;38:571–9.

    Article  CAS  PubMed  Google Scholar 

  6. Erro R, Sheerin U-M, Bhatia KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord. 2014;29:1108–16. This is a comprehensive review of the clinical and genetic features of the paroxysmal dyskinesias. The authors emphasize classification based on genetics.

    Article  PubMed  Google Scholar 

  7. Chen WJ et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet. 2011;43(12):1252–5.

    Article  CAS  PubMed  Google Scholar 

  8. Wang JL et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain. 2011;134(Pt 12):3493–501.

    Article  PubMed  Google Scholar 

  9. Lee HY et al. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep. 2012;1(1):2–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cloarec R et al. PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine. Neurology. 2012;79(21):2097–103. This report expanded the phenotype of disorders associated with PRRT2 mutations.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gardiner AR et al. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology. 2012;79(21):2115–21. This report expanded the phenotype of disorders associated with PRRT2 mutations.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Silveira-Moriyama L et al. Clinical features of childhood-onset paroxysmal kinesigenic dyskinesia with PRRT2 gene mutations. Dev Med Child Neurol. 2013;55(4):327–34. This report expanded the phenotype of disorders associated with PRRT2 mutations.

    Article  PubMed  Google Scholar 

  13. Scheffer IE et al. PRRT2 phenotypic spectrum includes sporadic and fever-related infantile seizures. Neurology. 2012;79(21):2104–8. This report expanded the phenotype of disorders associated with PRRT2 mutations.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Blakeley J, Jankovic J. Secondary paroxysmal dyskinesias. Mov Disord. 2002;17:726–34.

    Article  PubMed  Google Scholar 

  15. Berger JR, Sheremata WA, Melamed E. Paroxysmal dystonia as the initial manifestation of multiple sclerosis. Arch Neurol. 1984;41:747–50.

    Article  CAS  PubMed  Google Scholar 

  16. Rosen J. Paroxysmal choreoathetosis associated with perinatal hypoxic encephalopathy. Arch Neurol. 1964;11:385–7.

    Article  CAS  PubMed  Google Scholar 

  17. Kaufman CB, Mink JW, Schwalb JM. Bilateral deep brain stimulation for treatment of medically refractory paroxysmal nonkinesigenic dyskinesia. J Neurosurg. 2010;112(4):847–50.

    Article  PubMed  Google Scholar 

  18. Kato H et al. Paroxysmal kinesigenic choreoathetosis and paroxysmal dystonic choreoathetosis in a patient with familial idiopathic hypoparathyroidism. Tohoku J Exp Med. 1987;151:233–9.

    Article  CAS  PubMed  Google Scholar 

  19. Dure LS, Mussell HG. Paroxysmal dyskinesia in a patient with pseudohypoparathyroidism. Mov Disord. 1998;13:746–8.

    Article  PubMed  Google Scholar 

  20. Mahmud FH et al. Molecular diagnosis of pseudohypoparathyroidism type Ib in a family with presumed paroxysmal dyskinesia. Pediatrics. 2005;115(2):e242–4.

    Article  PubMed  Google Scholar 

  21. Lee HY et al. The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum Mol Genet. 2004;13(24):3161–70.

    Article  CAS  PubMed  Google Scholar 

  22. Rainier S et al. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol. 2004;61(7):1025–9.

    Article  PubMed  Google Scholar 

  23. Du W et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet. 2005;37(7):733–8.

    Article  CAS  PubMed  Google Scholar 

  24. Zorzi G et al. Paroxysmal movement disorders in GLUT1 deficiency syndrome. Neurology. 2008;71(2):146–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bhatia KP et al. Paroxysmal exercise-induced dystonia: eight new sporadic cases and a review of the literature. Mov Disord. 1997;12:1007–12.

    Article  CAS  PubMed  Google Scholar 

  26. Plant GT et al. Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry. 1984;47(3):275–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lance JW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann Neurol. 1977;2:285–93.

    Article  CAS  PubMed  Google Scholar 

  28. Weber YG et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Weber YG et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77(10):959–64.

    Article  CAS  PubMed  Google Scholar 

  30. Alter AS, et al. Long-term clinical course of Glut1 deficiency syndrome. J Child Neurol. 2014.

  31. Urbizu A et al. Paroxysmal exercise-induced dyskinesia, writer’s cramp, migraine with aura and absence epilepsy in twin brothers with a novel SLC2A1 missense mutation. J Neurol Sci. 2010;295(1–2):110–3.

    Article  CAS  PubMed  Google Scholar 

  32. Ramm-Pettersen A et al. Good outcome in patients with early dietary treatment of GLUT-1 deficiency syndrome: results from a retrospective Norwegian study. Dev Med Child Neurol. 2013;55(5):440–7. This study reports benefit from the ketogenic diet in PED.

    Article  PubMed  Google Scholar 

  33. Leen WG et al. Movement disorders in GLUT1 deficiency syndrome respond to the modified Atkins diet. Mov Disord. 2013;28(10):1439–42. This study reports benefit from the modified Atkins diet in PED.

    Article  PubMed  Google Scholar 

  34. Goodenough DJ et al. Familial and acquired paroxysmal dyskinesias. A proposed classification with delineation of clinical features. Arch Neurol. 1978;35:827–31.

    Article  CAS  PubMed  Google Scholar 

  35. Chatterjee A, Louis ED, Frucht S. Levetiracetam in the treatment of paroxysmal kinesiogenic choreoathetosis. Mov Disord. 2002;17:614–5.

    Article  PubMed  Google Scholar 

  36. Chudnow RS et al. Gabapentin for familial paroxysmal dystonic choreoathetosis. Neurology. 1997;49(5):1441–2.

    Article  CAS  PubMed  Google Scholar 

  37. Tsao CY. Effective treatment with oxcarbazepine in paroxysmal kinesigenic choreoathetosis. J Child Neurol. 2004;19(4):300–1.

    Article  PubMed  Google Scholar 

  38. Uberall MA, Wenzel D. Effectiveness of lamotrigine in children with paroxysmal kinesigenic choreoathetosis. Dev Med Child Neurol. 2000;42(10):699–700.

    Article  CAS  PubMed  Google Scholar 

  39. Huang Y et al. Topiramate therapy for paroxysmal kinesigenic choreoathetosis. Mov Disord. 2005;20:75–7.

    Article  CAS  PubMed  Google Scholar 

  40. Loong SC, Ong YY. Paroxysmal kinesigenic choreoathetosis. Report of a case relieved by L-dopa. J Neurol Neurosurg Psychiatry. 1973;36(6):921–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Homan R, Vasko M, Blaw M. Phenytoin plasma concentrations in paroxysmal kinesigenic choreoathetosis. Neurology. 1980;30:673–6.

    Article  CAS  PubMed  Google Scholar 

  42. Wein T et al. Exquisite sensitivity of paroxysmal kinesigenic choreoathetosis to carbamazepine. Neurology. 1996;47:1104–6.

    Article  CAS  PubMed  Google Scholar 

  43. Yang Y et al. Oxcarbazepine versus carbamazepine in the treatment of paroxysmal kinesigenic dyskinesia. Int J Neurosci. 2012;122(12):719–22. This small study reports clinical equivalency of carbamazepine and oxcarbazepine in PKD.

    Article  CAS  PubMed  Google Scholar 

  44. Dooley JM, Brna PM. Sublingual lorazepam in the treatment of familial paroxysmal nonkinesigenic dyskinesia. Pediatr Neurol. 2004;30(5):365–6.

    Article  PubMed  Google Scholar 

  45. Kurlan R, Shoulson I. Familial paroxysmal dystonic choreoathetosis and response to alternate-day oxazepam therapy. Ann Neurol. 1983;13(4):456–7.

    Article  CAS  PubMed  Google Scholar 

  46. Przuntek H, Monninger P. Therapeutic aspects of kinesiogenic paroxysmal choreoathetosis and familial paroxysmal choreoathetosis of the Mount and Reback type. J Neurol. 1983;230(3):163–9.

    Article  CAS  PubMed  Google Scholar 

  47. Alemdar M et al. Levetiracetam-responding paroxysmal nonkinesigenic dyskinesia. Clin Neuropharmacol. 2007;30(4):241–4.

    PubMed  Google Scholar 

  48. Micheli F et al. Paroxysmal dystonia responsive to anticholinergic drugs. Clin Neuropharmacol. 1987;10:365–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jonathan W. Mink declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan W. Mink MD, PhD.

Additional information

This article is part of the Topical Collection on Pediatric Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mink, J.W. Treatment of Paroxysmal Dyskinesias in Children. Curr Treat Options Neurol 17, 23 (2015). https://doi.org/10.1007/s11940-015-0350-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-015-0350-9

Keywords

Navigation