Skip to main content

Advertisement

Log in

Management of Increased Intracranial Pressure

  • CRITICAL CARE NEUROLOGY (KN SHETH, SECTION EDITOR)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

After brain injury, neurologic intensive care focuses on the detection and treatment of secondary brain insults that may compound the initial injury. Increased intracranial pressure (ICP) contributes to secondary brain injury by causing brain ischemia, hypoxia, and metabolic dysfunction. Because ICP is easily measured at the bedside, it is the target of numerous pharmacologic and surgical interventions in efforts to improve brain physiology and limit secondary injury. However, ICP may not adequately reflect the metabolic health of the underlying brain tissue, particularly in cases of focal brain injury. As a result, ICP control alone may be insufficient to impact patients’ long-term recovery. Further studies are needed to better understand the combination of cerebral, hemodynamic, and metabolic markers that are best utilized to ensure optimal brain and systemic recovery and overall patient outcome after brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Becker DP, Miller JD, Ward JD, et al. The outcome from severe head injury with early diagnosis and intensive management. J Neurosurg. 1977;47:491–502.

    Article  CAS  PubMed  Google Scholar 

  2. Nakagawa K, Smith WS. Evaluation and management of increased intracranial pressure. Continuum. 2011;17:1077–93.

    PubMed  Google Scholar 

  3. Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;56:1746–8.

    Article  CAS  PubMed  Google Scholar 

  4. Narayan RK, Greenberg RP, Miller JD, et al. Improved confidence of outcome prediction in severe head injury. A comparative analysis of the clinical examination, multimodality evoked potentials, CT scanning, and intracranial pressure. J Neurosurg. 1981;54:751–62.

    Article  CAS  PubMed  Google Scholar 

  5. Eisenberg HM, Frankowski RF, Contant CF, et al. High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg. 1988;69:15–23.

    Article  CAS  PubMed  Google Scholar 

  6. Marmarou A, Anderson RL, Ward JD, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75:S59–66.

    Google Scholar 

  7. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24 Suppl 1:S55–8.

    PubMed  Google Scholar 

  8. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24 Suppl 1:S37–44.

    PubMed  Google Scholar 

  9. Chesnut RM, Temkin N, Carney N, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81. This paper is the only large, randomized controlled study assessing the utility of intracranial pressure monitoring following traumatic brain injury to date.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kahle KT, Duhaime AC. Intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2013;368:1750.

    PubMed  Google Scholar 

  11. Ropper A. Brain in a box. N Engl J Med. 2012;367:2539–41.

    Article  CAS  PubMed  Google Scholar 

  12. Schwab S, Aschoff A, Spranger M, et al. The value of intracranial pressure monitoring in acute hemispheric stroke. Neurology. 1996;47:393–8.

    Article  CAS  PubMed  Google Scholar 

  13. Poca MA, Benejam B, Sahuquillo J, et al. Monitoring intracranial pressure in patients with malignant middle cerebral artery infarction: is it useful? J Neurosurg. 2010;112:648–57.

    Article  PubMed  Google Scholar 

  14. Gardner PA, Engh J, Atteberry D, Moossy JJ. Hemorrhage rates after external ventricular drain placement. J Neurosurg. 2009;110:1021–5.

    Article  PubMed  Google Scholar 

  15. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2002;51:170–81.

    Article  PubMed  Google Scholar 

  16. Vik A, Nag T, Fredriksli OA, et al. Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg. 2008;109:678–84.

    Article  PubMed  Google Scholar 

  17. Sheth KN, Stein DM, Aarabi B, et al. Intracranial pressure dose and outcome in traumatic brain injury. Neurocrit Care. 2013;18:26–32.

    Article  PubMed  Google Scholar 

  18. Kahraman S, Dutton RP, Hu P, et al. Automated measurement of “pressure times time dose” of intracranial hypertension best predicts outcome after severe traumatic brain injury. J Trauma. 2010;69:110–8.

    Article  PubMed  Google Scholar 

  19. Bekar A, Gören S, Korfali E, et al. Complications of brain tissue pressure monitoring with a fiberoptic device. Neurosurg Rev. 1998;21:254–9.

    Article  CAS  PubMed  Google Scholar 

  20. Rosner MJ, Coley IB. Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg. 1986;65:636–41.

    Article  CAS  PubMed  Google Scholar 

  21. Ng I, Lim J, Wong HB. Effects of head posture on cerebral hemodynamics: its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery. 2004;54:593–8.

    Article  PubMed  Google Scholar 

  22. Raichle ME, Plum F. Hyperventilation and cerebral blood flow. Stroke. 1972;3:566–75.

    Article  CAS  PubMed  Google Scholar 

  23. Stocchetti N, Maas AIR, Chieregato A, van der Plas AA. Hyperventilation in head injury: a review. Chest. 2005;127:1812–27.

    Article  PubMed  Google Scholar 

  24. Diringer MN, Zazulia AR. Osmotic therapy: fact and fiction. Neurocrit Care. 2004;1:219–33.

    Article  CAS  PubMed  Google Scholar 

  25. Bentsen G, Breivik H, Lundar T, Stubhaug A. Hypertonic saline (7.2 %) in 6 % hydroxyethyl starch reduces intracranial pressure and improves hemodynamics in a placebo-controlled study involving stable patients with subarachnoid hemorrhage. Crit Care Med. 2006;34:2912–7.

    CAS  PubMed  Google Scholar 

  26. White H, Cook D, Venkatesh B. The use of hypertonic saline for treating intracranial hypertension after traumatic brain injury. Anesth Analg. 2006;102:1836–46.

    Article  CAS  PubMed  Google Scholar 

  27. Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med. 2000;28:3301–13.

    Article  CAS  PubMed  Google Scholar 

  28. Wells DL, Swanson JM, Wood GC, et al. The relationship between serum sodium and intracranial pressure when using hypertonic saline to target mild hypernatremia in patients with head trauma. Crit Care. 2012;16:R193.

    Article  PubMed  Google Scholar 

  29. Murad A, Ghostine S, Colohan ART. Controlled lumbar drainage in medically refractory increased intracranial pressure. Acta Neurochir. 2008;102(Suppl):89–91.

    Google Scholar 

  30. Bauer DF, McGwin G, Melton SM, et al. Risk factors for conversion to permanent ventricular shunt in patients receiving therapeutic ventriculostomy for traumatic brain injury. Neurosurgery. 2011;68:85–8.

    Article  PubMed  Google Scholar 

  31. Rea GL, Rockswold GL. Barbiturate therapy in uncontrolled intracranial hypertension. Neurosurgery. 1983;12:401–4.

    Article  CAS  PubMed  Google Scholar 

  32. Marshall GT, James RF, Landman MP, et al. Pentobarbital coma for refractory intra-cranial hypertension after severe traumatic brain injury: mortality predictions and one-year outcomes in 55 patients. J Trauma. 2010;69:275–83.

    Article  PubMed  Google Scholar 

  33. Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part II: acute and chronic barbiturate administration in the management of head injury. J Neurosurg. 1979;50:26–30.

    Article  CAS  PubMed  Google Scholar 

  34. Roberts I, Sydenham E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev. 2012;12, CD000033.

    PubMed  Google Scholar 

  35. Vahedi K, Hofmeijer J, Juettler E, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomized controlled trials. Lancet Neurol. 2007;6:215–22.

    Article  PubMed  Google Scholar 

  36. Jüttler E, Schwab S, Schmiedek P, et al. Decompressive surgery for the treatment of malignant infarction of the middle cerebral artery (DESTINY): a randomized, controlled trial. Stroke. 2007;38:2518–25.

    Article  PubMed  Google Scholar 

  37. Hofmeijer J, Kappelle LJ, Algra A, et al. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multi-center, open, randomized trial. Lancet Neurol. 2009;8:326–33.

    Article  PubMed  Google Scholar 

  38. Vahedi K, Vicaut E, Mateo J, et al. Sequential-design, multi-center, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke. 2007;38:2506–17.

    Article  PubMed  Google Scholar 

  39. Geurts M, van der Worp HB, Kappelle LJ, et al. Surgical decompression for space-occupying cerebral infarction: outcomes at 3 years in the randomized HAMLET trial. Stroke. 2013;44:2506–8.

    Article  PubMed  Google Scholar 

  40. Zhao J, Su YY, Zhang Y, et al. Decompressive hemicraniectomy in malignant middle cerebral artery infarct: a randomized controlled trial enrolling patients up to 80 years old. Neurocrit Care. 2012;17:161–71.

    Article  PubMed  Google Scholar 

  41. Puetz V, Campos CR, Eliasziw M, et al. Assessing the benefits of hemicraniectomy: what is a favourable outcome? Lancet Neurol. 2007;6:580.

    Article  PubMed  Google Scholar 

  42. Rahme R, Zuccarello M, Kleindorfer D, et al. Decompressive hemicraniectomy for malignant middle cerebral artery territory infarction: is life worth living? J Neurosurg. 2012;117:749–54.

    Article  PubMed  Google Scholar 

  43. Danish SF, Barone D, Lega BC, Stein SC. Quality of life after hemicraniectomy for traumatic brain injury in adults: a review of the literature. Neurosurg Focus. 2009;26:E2.

    Article  PubMed  Google Scholar 

  44. Kolias AG, Kirkpatrick PJ, Hutchinson PJ. Decompressive craniectomy: past, present and future. Nat Rev Neurol. 2013;9:405–15. This review article provides a thorough and comprehensive review of the use of surgical craniectomy for the management of a variety of severe brain injuries and the ethical implications of this procedure.

    Article  CAS  PubMed  Google Scholar 

  45. Whitfield PC, Patel H, Hutchinson PJ, et al. Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension. Br J Neurosurg. 2001;15:500–7.

    Article  CAS  PubMed  Google Scholar 

  46. Aarabi B, Hesdorffer DC, Ahn ES, et al. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg. 2006;104:469–79.

    Article  PubMed  Google Scholar 

  47. Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–502.

    Article  CAS  PubMed  Google Scholar 

  48. Attia J, Cook DJ. Prognosis in anoxic and traumatic coma. Crit Care Clin. 1998;14:497–511.

    Article  CAS  PubMed  Google Scholar 

  49. Sahuquillo J, Martínez-Ricarte F, Poca MA. Decompressive craniectomy in traumatic brain injury after the DECRA trial. Where do we stand? Curr Opin Crit Care. 2013;19:101–6.

    Article  PubMed  Google Scholar 

  50. Austinat M, Braeuninger S, Pesquero JB, et al. Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke. 2009;40:285–93.

    Article  CAS  PubMed  Google Scholar 

  51. Raslan F, Schwarz T, Meuth SG, et al. Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood–brain barrier leakage and inflammation. J Cereb Blood Flow Metab. 2010;30:1477–86.

    Article  CAS  PubMed  Google Scholar 

  52. Albert-Weissenberger C, Stetter C, Meuth SG, et al. Blocking of bradykinin receptor B1 protects from focal closed head injury in mice by reducing axonal damage and astroglia activation. J Cereb Blood Flow Metab. 2012;32:1747–56.

    Article  CAS  PubMed  Google Scholar 

  53. Shakur H, Andrews P, Asser T, et al. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury. Trials. 2009;10:109.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Kunz M, Nussberger J, Holtmannspoetter M, et al. Bradykinin in blood and CSF after acute cerebral lesions: correlations with cerebral edema and intracranial pressure. J Neurotrauma. 2013; [Ahead of print].

  55. Deutsch ER, Espinoza TR, Atif F, et al. Progesterone’s role in neuroprotection: a review of the evidence. Brain Res. 2013;1530:82–105.

    Article  CAS  PubMed  Google Scholar 

  56. Shahrokhi N, Khaksari M, Soltani Z, et al. Effect of sex steroid hormones on brain edema, intracranial pressure, and neurologic outcomes after traumatic brain injury. Eur J Neurol. 2010;88:414–21.

    CAS  Google Scholar 

  57. Yan F, Hu Q, Chen J, Wu C, Gu C, Chen G. Progesterone attenuates early brain injury after subarachnoid hemorrhage in rats. Neurosci Lett. 2013;543:163–7.

    Article  CAS  PubMed  Google Scholar 

  58. Wright DW, Kellermann AL, Hertzberg VS, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med. 2007;49:391–402.

    Article  PubMed  Google Scholar 

  59. Simard JM, Chen M, Tarasov KV, et al. Newly expressed SUR1-regulated NC (Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12:433–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32:1699–717.

    Article  CAS  PubMed  Google Scholar 

  61. Sheth KN. Novel approaches to the primary prevention of edema after ischemia. Stroke. 2013;44:S136.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Danielle K. Sandsmark declares that she has no conflict of interest.

Kevin N. Sheth declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle K. Sandsmark MD, PhD.

Additional information

This article is part of the Topical Collection on Critical Care Neurology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandsmark, D.K., Sheth, K.N. Management of Increased Intracranial Pressure. Curr Treat Options Neurol 16, 272 (2014). https://doi.org/10.1007/s11940-013-0272-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-013-0272-3

Keywords

Navigation