Current Treatment Options in Neurology

, Volume 15, Issue 5, pp 618–633 | Cite as

Management of CNS-related Disease Manifestations in Patients With Tuberous Sclerosis Complex

PEDIATRIC NEUROLOGY (HS SINGER, SECTION EDITOR)

Opinion statement

Historically, before the advent of modern imaging and genetic testing, Tuberous Sclerosis Complex (TSC) was more of a diagnostic challenge and less of a treatment challenge. This is because the natural history of TSC was poorly understood and TSC-specific treatments were non-existent. In the current era, diagnosis is more straightforward but management is much more complex. Disease manifestations vary by age, severity, and organ system. Management issues in the first few months of life, including neurologic manifestations, are very different than late childhood, adolescence, and adulthood. With increasing numbers of TSC diagnoses being made prenatally or shortly after birth, the opportunity for interventions that may improve long-term developmental and epilepsy outcomes now may precede the onset of neurological clinical symptoms. Familiarity and anticipation of these neurologic complications and rapid response to their emergence is crucial. Periodic imaging surveillance for development of subependymal giant cell astrocytoma (SEGA), preferably by magnetic resonance imaging (MRI) every 1–3 years, is now standard of care. Early SEGA detection provides opportunity to initiate pharmacologic treatment with everolimus if appropriate, thereby negating the need for invasive surgery. Routine electroencephalography (EEG) in asymptomatic infants for the first year or two of life is becoming increasingly accepted, with treatment initiation of vigabatrin dependent on concerning EEG findings instead of waiting until onset of clinical seizures, the traditional approach. Effective SEGA treatment and optimal seizure control remain principal during the first few decades of life for the clinical neurologist involved in the management of TSC. However, during the same period and extending through adulthood, assessment of TSC-associated neuropsychiatric disorder (TAND) is also key to the best clinical outcome and quality of life for affected individuals and their surrounding family and caregivers.

Keywords

Tuberous sclerosis Subependymal giant cell astrocytoma (SEGA) Epilepsy Infantile spasms mTOR Everolimus Sirolimus Vigabatrin TSC-associated neuropsychiatric disorder (TAND) CNS Treatment Management 

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bourneville D-M. Encéphalite ou sclérose tubéreuse des circonvolutions cérébrales. Encéphalite ou sclérose tubéreuse des circonvolutions cérébrales [Encephalitis or tuberous sclerosis of the cerebral convolutions]. Archives de Neurologie, Paris. 1881;1:390–412.Google Scholar
  2. 2.
    Von Recklinghausen F. Ein Herz von einem Nuegeborene welches mehrere theils nachaussen, theils nachden Höhlein prominirende Tumoren (Myomen) trug. Ein Herz von einem Nuegeborene welches mehrere theils nachaussen, theils nachden Höhlein prominirende Tumoren (Myomen) trug [A heart of a newborn with partial external and internal prominent tumors (fibroids)]. Monatschr Gebursheklkd. 1862;20:1–2.Google Scholar
  3. 3.
    O'Callaghan F, Shiell A, Osborne J, Martyn C. Prevalence of tuberous sclerosis estimated by capture-recapture analysis. Lancet. 1998;352:318–9.CrossRefGoogle Scholar
  4. 4.
    European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993;75:1305–15.CrossRefGoogle Scholar
  5. 5.
    van Slegtenhorst M, deHoogt R, Hermans C, Henske E, Short M, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277:805–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol. 2005;15:702–13.PubMedCrossRefGoogle Scholar
  7. 7.••
    Franz D, Belousova E, Sparagana S, Bebin E, Frost M, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associate702-71d with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2012;381:125–32. This article provides definitive evidence of the benefit of everolimus for the treatment of SEGA in a randomized, double-blinded placebo-controlled design. All of the patients in the treatment group demonstrated some degree of benefit, whereas tumor progression was only observed in the placebo group. Class I evidence.PubMedCrossRefGoogle Scholar
  8. 8.
    Franz DN, Leonard J, Tudor C, Chuck G, Care M, et al. Rapamycin Causes Regression of Astrocytomas in Tuberous Sclerosis Complex. Ann Neurol. 2006;59:490–8.PubMedCrossRefGoogle Scholar
  9. 9.•
    Krueger D, Care M, Agricola K, Tudor C, Mays M, et al. Everolimus long-term safety and efficacy in subependymal giant-cell astrocytoma. Neurology. 2012;80:574–80. This article provides most up to date evidence of long-term safety and efficacy of everolimus for medical management of SEGA. Treatment continues to be well-tolerated and prevents tumor progression median treatment duration of 34.2 months. Class III evidence.CrossRefGoogle Scholar
  10. 10.
    Krueger DA, Care MM, Holland K, Agricola K, Tudor C, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363:1801–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Bissler JJ, Kingswood JC, Radzikowska E, Zonnenberg BA, Frost M, et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2013;[Epub ahead of print].Google Scholar
  12. 12.
    Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med. 2008;358:140–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Dabora SL, Franz DN, Ashwal S, Sagalowsky A, DiMario Jr FJ, et al. Multicenter phase 2 trial of sirolimus for tuberous sclerosis: Kidney angiomyolipomas and other tumors regress and VEGF- D levels decrease. PLoS ONE. 2011;6.Google Scholar
  14. 14.
    Davies DM, De Vries PJ, Johnson SR, McCartney DL, Cox JA, et al. Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res. 2011;17:4071–81.PubMedCrossRefGoogle Scholar
  15. 15.
    McCormack F, Inoue Y, Moss J, Singer L, Strange C, et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med. 2011;364:1595–606.PubMedCrossRefGoogle Scholar
  16. 16.
    Foster R, Bint L, Halbert A. Topical 0.1% rapamycin for angiofibromas in paediatric patients with tuberous sclerosis: a pilot study of four patients. Australas J Dermatol. 2012;53:52–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Haemel A, O'Brian A, Teng J. Topical rapamycin: a novel approach to facial angiofibromas in tuberous sclerosis. Arch Dermatol. 2010;146:715–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Koenig M, Hebert A, Roberson J, Samueals J, Slopis J, et al. Topical rapamycin therapy to alleviate the cutaneous manifestations of tuberous sclerosis complex: a double-blind, randomized, controlled trial to evaluate the safety and efficacy of topical applied rapamycin. Drugs R&D. 2012;12:121–6.CrossRefGoogle Scholar
  19. 19.
    Mutizwa M, Berk D, Anadkat M. Treatment of facial angiofibromas with topical application of oral rapamycin solution (1mgmL(−1) ) in two patients with tuberous sclerosis. Br J Dermatol. 2011;165:922–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Demir H, Ekici F, Yazal Erdem A, Emir S, Tunç B. Everolimus: a challenging drug in the treatment of multifocal inoperable cardiac rhabdomyoma. Pediatrics. 2012;130:e243–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Tiberio D, Franz D, Phillips J. Regression of a cardiac rhabdomyoma in a patient receiving everolimus. Pediatrics. 2011;127:e1335–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Krueger D, Wilfong A, Holland-Bouley K, Anderson A, Agricola K, et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol. 2013. doi:10.1002/ana.23960.
  23. 23.
    Adams R, Victor M. Principles of neurology. New York: McGraw-Hill; 1985. p. 1186.Google Scholar
  24. 24.
    Menkes J, Maria B. Neurocutaneous syndromes. In: Menkes J, Sarnat H, editors. Child Neurology. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 865–72.Google Scholar
  25. 25.
    Zhou J, Shrikhande G, Xu J, McKay R, Burns D, et al. Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev. 2011;25:1595–600.PubMedCrossRefGoogle Scholar
  26. 26.
    Way S, McKenna III J, Mietzsch U, Reith R, Wu H, et al. Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Gen. 2009;18:1252–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Carlson B, Houser O, Gomez M. Brain imaging in the tuberous sclerosis complex. In: Gomez M, Sampson J, Whittemore V, editors. Tuberous sclerosis complex. 3rd ed. New York: Oxford University Press; 1999. p. 85–100.Google Scholar
  28. 28.
    Roach ES, Gomez MR, Northrup H. Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol. 1998;13:624–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Inoue Y, Nemoto Y, Murata R, Tashiro T, Shakudo M, et al. CT and MR imaging of cerebral tuberous sclerosis. Brain Dev. 1998;20:209–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Kalantari BN, Salamon N. Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. Am J Roentgenol. 2008;190:W304–9.CrossRefGoogle Scholar
  31. 31.
    Crino P, Mehta R, Vinters H. Pathogenesis of TSC in the brain. In: Kwiatkowsi D, Whittemore V, Thiele E, editors. Tuberous sclerosis complex: genes, clinical features, and therapeutics. Weinheim: Wiley-Blackwell; 2010. p. 285–309.Google Scholar
  32. 32.
    Kim SK, Wang KC, Cho BK, Jung HW, Lee YJ, et al. Biological behavior and tumorigenesis of subependymal giant cell astrocytomas. J Neuro-Oncol. 2001;52:217–25.CrossRefGoogle Scholar
  33. 33.
    Adriaensen ME, Schaefer-Prokop CM, Stijnen T, Duyndam DA, Zonnenberg BA, et al. Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol. 2009;16:691–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Phi JH, Park SH, Chae JH, Hong KH, Park SS, et al. Congenital subependymal giant cell astrocytoma: clinical considerations and expression of radial glial cell markers in giant cells. Child Nerv Syst. 2008;24:1499–503.CrossRefGoogle Scholar
  35. 35.
    Raju GP, Urion DK, Sahin M. Neonatal Subependymal Giant Cell Astrocytoma: new case and review of literature. Pediatr Neurol. 2007;36:128–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Shepherd CW, Scheithauer B, Gomez MR. Brain tumors in tuberous sclerosis. A clinicopathologic study of the Mayo Clinic experience. Ann N Y Acad Sci. 1991;615:378–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Buccoliero A, Franchi A, Castiglione F, Gheri C, Mussa F, et al. Subependymal giant cell astrocytoma (SEGA): is it an astrocytoma? Morphological, immunohistochemical and ultrastructural study. Neuropathology. 2009;29:25–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Cuccia V, Zuccaro G, Sosa F, Monges J, Lubienieky F, et al. Subependymal giant cell astrocytoma in children with tuberous sclerosis. Child Nerv Syst. 2003;19:232–43.Google Scholar
  39. 39.
    The International Tuberous Sclerosis Complex Consensus Group. “Recommendations for surveillance and management in tuberous sclerosis complex: 2012 update of the International Tuberous Sclerosis Complex Consensus Conference.” Presented at the 2013 International Research Conference on Tuberous Sclerosis Complex and Related Disorders, Washington, DC, June 20–23, 2014.Google Scholar
  40. 40.
    Thiele EA. Managing epilepsy in tuberous sclerosis complex. J Child Neurol. 2004;19:680–6.PubMedGoogle Scholar
  41. 41.•
    Jóźwiak S, Kotulska K, Domańska-Pakieła D, Łojszczyk B, Syczewska M, et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediat Neurol. 2011;15:424–31. This paradigm shifting article introduces a prospective, preventative approach towards seizure control rather than the traditional reactionary approach of waiting until after the onset of clinical seizures in infants with TSC. As a result, those infants treated prospectively demonstrated improved long-term seizure control and developmental progress. Class III evidence.CrossRefGoogle Scholar
  42. 42.
    Curatolo P, Verdecchia M, Bombardieri R. Tuberous sclerosis complex: a review of neurological aspects. Eur J Paediat Neurol. 2002;6:15–23.CrossRefGoogle Scholar
  43. 43.
    de Vries P. Neurodevelopmental, Psychiatric and Cognitive Aspects of Tuberous Sclerosis Complex. In: Kwiatkowsi DJ, Whittemore VH, Thiele EA, editors. Tuberous Sclerosis Complex. Weinheim: Wiley-Blackwell; 2010. p. 229–68.CrossRefGoogle Scholar
  44. 44.
    Leclezio L, de Vries P. The Tuberous Sclerosis Complex Associated Neuropsychiatrif Disorders (TAND) Checklist- Pilot validation of a new screening tool for neurophsyciatric manifestations of TSC. Washington, DC.2013.Google Scholar
  45. 45.
    De Vries P, Humphrey A, McCartney D, Prather P, Bolton P, et al. Consensus clinical guidelines for the assessment of cognitive and behavioral problems in Tuberous Sclerosis. Eur Child Adolesc Psychiatr. 2005;14:183–90.CrossRefGoogle Scholar
  46. 46.
    Stafstrom CE, Bough KJ. The Ketogenic Diet for the Treatment of Epilepsy: a challenge for nutritional neuroscientists. Nutr Neurosci. 2003;6:67–79.PubMedCrossRefGoogle Scholar
  47. 47.
    Kossoff E, Thiele E, Pfeifer H, McGrogan J, Freeman J. Tuberous sclerosis complex and the ketogenic diet. Epilepsia. 2005;46:1684–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Coppola G, Klepper J, Ammendola E, Fiorillo M, Corte R, et al. The effects of the ketogenic diet in refractory partial seizures with reference to tuberous sclerosis. Eur J Paediat Neurol. 2006;10:148–51.CrossRefGoogle Scholar
  49. 49.
    Larson AM, Pfeifer HH, Thiele EA. Low glycemic index treatment for epilepsy in tuberous sclerosis complex. Epilepsy Res. 2012;99(1–2):180–2Google Scholar
  50. 50.
    Agricola K, Tudor C, Krueger D, Franz D. Nursing implications for the lifelong management of tuberous sclerosis complex. J Neurosci Nurs. 2013(in press).Google Scholar
  51. 51.
    Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci. 2008;28:5422–32.PubMedCrossRefGoogle Scholar
  52. 52.
    Meikle L, Talos D, Onda H, Pollizzi K, Rotenberg A, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci. 2007;27:5546–58.PubMedCrossRefGoogle Scholar
  53. 53.
    Muncy J, Butler IJ, Koenig M. Rapamycin reduces seizure frequency in tuberous sclerosis complex. J Child Neurol. 2009;24:477.PubMedCrossRefGoogle Scholar
  54. 54.
    Zeng L, Rensing N, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci. 2009;29:6964–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol. 2008;63:444–53.PubMedCrossRefGoogle Scholar
  56. 56.
    McDaniel S, Rensing N, Thio L, Yamada K, Wong M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia. 2011;52:e7–11.PubMedCrossRefGoogle Scholar
  57. 57.
    Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med. 2008;14:843–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Ehninger D, Silva AJ. Rapamycin for treating Tuberous sclerosis and Autism spectrum disorders. Trends Mol Med. 2011;17:78–87.PubMedCrossRefGoogle Scholar
  59. 59.
    Go C, Mackay M, Weiss S, Stephens D, Addams-Webber T, et al. Evidence-based guideline update: medical treatment of infantile spasms. Neurology. 2012;78:1974–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Camposano SE, Major P, Halpern E, Thiele EA. Vigabatrin in the treatment of childhood epilepsy: a retrospective chart review of efficacy and safety profile. Epilepsia. 2008;49:1186–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Greiner H, Lynch E, Fordyce S, Agricola K, Tudor C, et al. Vigabatrin for childhood partial-onset epilepsies. Pediat Neurol. 2012;46:83–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Kinirons P, Cavalleri G, O'Rourke D, Doherty C, Reid I, et al. Vigabatrin retinopathy in an Irish cohort: lack of correlation with dose. Epilepsia. 2006;47:311–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Jammoul F, Wang Q, Nabbout R, Coriat C, Duboc A, et al. Taurine deficiency is a cause of vigabatrin-induced retinal phototoxicity. Ann Neurol. 2009;65:98–107.PubMedCrossRefGoogle Scholar
  64. 64.
    Collins J, Tudor C, Leonard J, Chuck G, Franz D. Levetiracetam as adjunctive antiepileptic therapy for patients with tuberous sclerosis complex: a retrospective open-label trial. J Child Neurol. 2006;21:53–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Franz D, Leonard J, Tudor C, Chuck G, Egelhoff J. Levetiracetam therapy of epilepsy in tuberous sclerosis. J Child Neurol. 2001;16:679.Google Scholar
  66. 66.
    Franz D, Leonard J, Tudor C, Chuck G, Egelhoff J. Oxcarbazepine therapy of epilepsy in tuberous sclerosis. J Child Neurol. 2001;16:680.Google Scholar
  67. 67.
    Franz D, Tudor C, Leonard J. Topiramate as therapy for tuberous sclerosis complex-associated seizures. Epilepsia. 2000;41:87.Google Scholar
  68. 68.
    Franz D, Tudor C, Leonard J, Egelhoff J, Byars A, et al. Lamotrigine therapy of epilepsy in tuberous sclerosis. Epilepsia. 2001;42:935–40.PubMedCrossRefGoogle Scholar
  69. 69.
    Franz DN, Tudor C, Leonard J, Egelhoff JC, Byars A, et al. Lamotrigine therapy of epilepsy in tuberous sclerosis. Epilepsia. 2001;42:935–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Chung T, Lynch E, Fiser C, Nelson D, Agricola K, et al. Psychiatric comorbidity and treatment response in patients with tuberous sclerosis complex. Ann Clin Psychiatr. 2011;23:263–9.Google Scholar
  71. 71.
    Krueger DA, Franz DN. Current management of tuberous sclerosis complex. Pediatr Drugs. 2008;10:299–313.CrossRefGoogle Scholar
  72. 72.
    Jozwiak J, Jozwiak S, Oldak M. Molecular activity of sirolimus and its possible application in tuberous sclerosis treatment. Med Res Rev. 2006;26:160–80.PubMedCrossRefGoogle Scholar
  73. 73.
    Wheless J, Ramsay R, Collins S. Vigabatrin. Neurotherapeutics. 2007;4:163–72.PubMedCrossRefGoogle Scholar
  74. 74.
    Berhouma M. Management of subependymal giant cell tumors in tuberous sclerosis complex: the neurosurgeon's perspective. World J Pediatr. 2010;6:103–10.PubMedCrossRefGoogle Scholar
  75. 75.
    de Ribaupierre S, Dorfmüller G, Bulteau C, Fohlen M, Pinard J, et al. Subependymal giant-cell astrocytomas in pediatric tuberous sclerosis disease: when should we operate? Neurosurgery. 2007;60:83–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Moavero R, Pinci M, Bombardieri R, Curatolo P. The management of subependymal giant cell tumors in tuberous sclerosis: a clinician's perspective. Child Nervous Syst. 2011;27:1203–10.CrossRefGoogle Scholar
  77. 77.
    Sun P, Kohrman M, Liu J, Guo A, Rogerio J, et al. Outcomes of resecting subependymal giant cell astrocytoma (SEGA) among patients with SEGA-related tuberous sclerosis complex: a national claims database analysis. Curr Med Res Opin. 2012;28:657–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Franz D, Agricola KD, Tudor C, Krueger D. Everolimus for tumor recurrence after surgical resection for subependymal giant cell astrocytoma assocaited with tuberous sclerosis complex. J Child Neurol. 2012;28:602–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Connolly MB, Hendson G, Steinbok P. Tuberous sclerosis complex: a review of the management of epilepsy with emphasis on surgical aspects. Child Nerv Syst. 2006;22:896–908.CrossRefGoogle Scholar
  80. 80.
    Koh S, Jayakar P, Dunoyer C, Whiting SE, Resnick TJ, et al. Epilepsy surgery in children with tuberous sclerosis complex: presurgical evaluation and outcome. Epilepsia. 2000;41:1206–13.PubMedCrossRefGoogle Scholar
  81. 81.
    Weiner HL, Ferraris N, LaJoie J, Miles D, Devinsky O. Epilepsy surgery for children with tuberous sclerosis complex. J Child Neurol. 2004;19:687–9.PubMedGoogle Scholar
  82. 82.
    Elliott RE, Carlson C, Kalhorn SP, Moshel YA, Weiner HL, et al. Refractory epilepsy in tuberous sclerosis: vagus nerve stimulation with or without subsequent resective surgery. Epilepsy Behav. 2009;16:454–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departments of Pediatrics and NeurologyUniversity of Cincinnati College of Medicine and Division of Child Neurology, Cincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations