Skip to main content

Advertisement

Log in

How schizophrenia and depression disrupt reward circuitry

  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Altered reward behavior in Parkinson’s disease (PD) is supported by observations of a placebo effect, prevalence of addiction to dopamine agonists, incidence of compulsive reward-seeking behaviors, and disturbed affective symptoms in PD patients. However, it is not clear how dopamine neuron loss causes or supports these aberrant reward behaviors and alterations in affect. For example, striatal dopamine transporter loss has a small, significant relationship with depression and anxiety in mild/moderate PD, but not in severe PD. Also, dopamine loss itself does not appear to predict depression or anhedonia, the diminished capacity to experience pleasure. Other neuropsychiatric disorders such as schizophrenia and depression may provide models of disturbed reward biology that may prove useful when thinking about altered reward circuitry and behavior in PD and other neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Berridge KC: The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 2007, 191:391–431.

    Article  CAS  Google Scholar 

  2. Grace AA, Floresco SB, Goto Y, Lodge DJ: Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 2007, 30:220–227.

    Article  PubMed  CAS  Google Scholar 

  3. Price JL: Subcortical projections from the amygdaloid complex. Adv Exp Med Biol 1986, 203:19–33.

    PubMed  CAS  Google Scholar 

  4. Price JL: Prefrontal cortical networks related to visceral function and mood. Ann N Y Acad Sci 1999, 877:383–396.

    Article  PubMed  CAS  Google Scholar 

  5. Cheer JF, Wassum KM, Heien ML, et al.: Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci 2004, 24:4393–4400.

    Article  PubMed  CAS  Google Scholar 

  6. Nestler EJ, Carlezon WA Jr: The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 2006, 59:1151–1159.

    Article  PubMed  CAS  Google Scholar 

  7. Gur RC, Erwin RJ, Gur RE, et al.: Facial emotion discrimination: II. Behavioral findings in depression. Psychiatry Res 1992, 42:241–251.

    Article  PubMed  CAS  Google Scholar 

  8. Gur RE, Kohler CG, Ragland JD, et al.: Flat affect in schizophrenia: relation to emotion processing and neurocognitive measures. Schizophr Bull 2006, 32:279–287.

    Article  PubMed  Google Scholar 

  9. Laruelle M: Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q J Nucl Med 1998, 42:211–221.

    PubMed  CAS  Google Scholar 

  10. Abi-Dargham A, Gil R, Krystal J, et al.: Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 1998, 155:761–767.

    PubMed  CAS  Google Scholar 

  11. Meyer JH, McNeely HE, Sagrati S, et al.: Elevated putamen D(2) receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am J Psychiatry 2006, 163:1594–1602.

    Article  PubMed  Google Scholar 

  12. Parsey RV, Oquendo MA, Zea-Ponce Y, et al.: Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol Psychiatry 2001, 50:313–322.

    Article  PubMed  CAS  Google Scholar 

  13. Mayberg HS, Lozano AM, Voon V, et al.: Deep brain stimulation for treatment-resistant depression. Neuron 2005, 45:651–660.

    Article  PubMed  CAS  Google Scholar 

  14. Zarate CA, Jr, Singh JB, Carlson PJ, et al.: A randomized trial of an N-methyl-D-aspartate antagonist in treatmentresistant major depression. Arch Gen Psychtatry 2006, 63:856–864.

    Article  CAS  Google Scholar 

  15. Berman RM, Cappiello A, Anand A, et al.: Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000, 47:351–354.

    Article  PubMed  CAS  Google Scholar 

  16. Goforth HW, Holsinger T: Rapid relief of severe major depressive disorder by use of preoperative ketamine and electroconvulsive therapy. J ECT 2007, 23:23–25.

    Article  PubMed  Google Scholar 

  17. Tye KM, Janak PH: Amygdala neurons differentially encode motivation and reinforcement. J Neurosci 2007, 27:3937–3945.

    Article  PubMed  CAS  Google Scholar 

  18. Spezio ML, Huang PY, Castelli F, Adolphs R: Amygdala damage impairs eye contact during conversations with real people. J Neurosci 2007, 27:3994–3997.

    Article  PubMed  CAS  Google Scholar 

  19. Das P, Kemp AH, Flynn G, et al.: Functional disconnections in the direct and indirect amygdala pathways for fear processing in schizophrenia. Schizophr Res 2007, 90:284–294.

    Article  PubMed  Google Scholar 

  20. Das P, Kemp AH, Liddell BJ, et al.: Pathways for fear perception: modulation of amygdala activity by thalamocortical systems. Neuroimage 2005, 26:141–148.

    Article  PubMed  Google Scholar 

  21. Tremblay LK, Naranjo CA, Cardenas L, et al.: Probing brain reward system function in major depressive disorder: altered response to dextroamphetamine. Arch Gen Psychiatry 2002, 59:409–416.

    Article  PubMed  Google Scholar 

  22. Tremblay LK, Naranjo CA, Graham SJ, et al.: Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatry 2005, 62:1228–1236.

    Article  PubMed  Google Scholar 

  23. Winograd-Gurvich C, Fitzgerald PB, Georgiou-Karistianis N, et al.: Negative symptoms: a review of schizophrenia, melancholic depression and Parkinson’s disease. Brain Res Bull 2006, 70:312–321.

    Article  PubMed  CAS  Google Scholar 

  24. Valentin VV, Dickinson A, O’Doherty JP: Determining the neural substrates of goal-directed learning in the human brain. J Neurosci 2007, 27:4019–4026.

    Article  PubMed  CAS  Google Scholar 

  25. Floresco SB, Tse MT: Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci 2007, 27:2045–2057.

    Article  PubMed  CAS  Google Scholar 

  26. Grace AA, Rosenkranz JA: Regulation of conditioned responses of basolateral amygdala neurons. Physiol Behav 2002, 77:489–493.

    Article  PubMed  CAS  Google Scholar 

  27. Siegle GJ, Thompson W, Carter CS, et al.: Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry 2007, 61:198–209.

    Article  PubMed  Google Scholar 

  28. Abi-Dargham A, Rodenhiser J, Printz D, et al.: Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A 2000, 97:8104–8109.

    Article  PubMed  CAS  Google Scholar 

  29. Breier A, Su TP, Saunders R, et al.: Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 1997, 94:2569–2574.

    Article  PubMed  CAS  Google Scholar 

  30. Cooper DC: The significance of action potential bursting in the brain reward circuit. Neurochem Int 2002, 41:333–340.

    Article  PubMed  CAS  Google Scholar 

  31. Floresco SB, West AR, Ash B, et al.: Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 2003, 6:968–973.

    Article  PubMed  CAS  Google Scholar 

  32. Heien ML, Wightman RM: Phasic dopamine signaling during behavior, reward, and disease states. CNS Neurol Disord Drug Targets 2006, 5:99–108.

    Article  PubMed  CAS  Google Scholar 

  33. Holcomb HH, Lahti AC, Medoff DR, et al.: Sequential regional cerebral blood flow brain scans using PET with H2(15)O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 2001, 25:165–172.

    Article  PubMed  CAS  Google Scholar 

  34. Holcomb HH, Lahti AC, Medoff DR, et al.: Effects of noncompetitive NMDA receptor blockade on anterior cingulate cerebral blood flow in volunteers with schizophrenia. Neuropsychopharmacology 2005, 30:2275–2282.

    Article  PubMed  CAS  Google Scholar 

  35. Rowland LM, Bustillo JR, Mullins PG, et al.: Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 2005, 162:394–396.

    Article  PubMed  Google Scholar 

  36. Mayberg HS, Brannan SK, Mahurin RK, et al.: Cingulate function in depression: a potential predictor of treatment response. Neuroreport 1997, 8:1057–1061.

    Article  PubMed  CAS  Google Scholar 

  37. Kegeles LS, Abi-Dargham A, Zea-Ponce Y, et al.: Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 2000, 48:627–640.

    Article  PubMed  CAS  Google Scholar 

  38. Breier A, Adler CM, Weisenfeld N, et al.: Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach. Synapse 1998, 29:142–147.

    Article  PubMed  CAS  Google Scholar 

  39. Lahti AC, Holcomb HH, Medoff DR, Tamminga CA: Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 1995, 6:869–872.

    Article  PubMed  CAS  Google Scholar 

  40. Lahti AC, Weiler MA, Tamara Michaelidis BA, et al.: Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 2001, 25:455–467.

    Article  PubMed  CAS  Google Scholar 

  41. Theberge J, Al Semann Y, Williamson PC, et al.: Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry 2003, 160:2231–2233.

    Article  PubMed  Google Scholar 

  42. Yildiz-Yesiloglu A, Ankerst DP: Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 2006, 147:1–25.

    Article  PubMed  CAS  Google Scholar 

  43. Rosenberg DR, Macmaster FP, Mirza Y, et al.: Reduced anterior cingulate glutamate in pediatric major depression: a magnetic resonance spectroscopy study. Biol Psychiatry 2005, 58:700–704.

    Article  PubMed  CAS  Google Scholar 

  44. Auer DP, Putz B, Kraft E, et al.: Reduced glutemate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 2000, 47:305–313.

    Article  PubMed  CAS  Google Scholar 

  45. Pfleiderer B, Michael N, Erfurth A, et al.: Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res 2003, 122:185–192.

    Article  PubMed  CAS  Google Scholar 

  46. Siegle GJ, Steinhauer SR, Thase ME, et al.: Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry 2002, 51:693–707.

    Article  PubMed  Google Scholar 

  47. Takahashi H, Koeda M, Oda K, et al.: An fMRI study of differential neural response to affective pictures in schizophrenia. Neuroimage 2004, 22:1247–1254.

    Article  PubMed  Google Scholar 

  48. Gur RE, McGrath C, Chan RM, et al.: An fMRI study of facial emotion processing in patients with schizophrenia. Am J Psychiatry 2002, 159:1992–1999.

    Article  PubMed  Google Scholar 

  49. Hollerman JR, Schultz W: Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1998, 1:304–309.

    Article  PubMed  CAS  Google Scholar 

  50. Schultz W, Tremblay L, Hollerman JR: Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology 1998, 37:421–429.

    Article  PubMed  CAS  Google Scholar 

  51. McClure SM, Ericson KM, Laibson DI, et al.: Time discounting for primary rewards. J Neurosci 2007, 27:5796–5804.

    Article  PubMed  CAS  Google Scholar 

  52. Pessiglione M, Seymour B, Flandin G, et al.: Dopaminedependent prediction errors underpin reward-seeking behaviour in humans. Nature 2006, 442:1042–1045.

    Article  PubMed  CAS  Google Scholar 

  53. Seymour B, O’Doherty JP, Dayan P, et al.: Temporal difference models describe higher-order learning in humans. Nature 2004, 429:664–667.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H. Holcomb MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holcomb, H.H., Rowland, L.M. How schizophrenia and depression disrupt reward circuitry. Curr Treat Options Neurol 9, 357–362 (2007). https://doi.org/10.1007/s11940-007-0021-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-007-0021-6

Keywords

Navigation