Skip to main content

Advertisement

Log in

Opinion statement

Brain stem tumors are heterogeneous. They range from the diffuse pontine tumors, which are almost invariably fatal despite all known therapies, to lower-grade focal or exophytic tumors that often have a very good prognosis with surgery or observation only. In this article, we review the epidemiology of brain stem tumors and note that diffuse pontine tumors, although rare, are a significant contributor to mortality among pediatric oncology patients. Diagnosis in typical cases is made using a mag-netic resonance imaging scan without biopsy. No highly effective standard treatment exists; therefore, inclusion of eligible patients in well-designed clinical research stud-ies is extremely important. If an appropriate trial is not available, conventionally frac-tionated external beam radiation therapy can provide good short-term palliation to a significant proportion of patients. An important area of preclinical research that may soon be investigated in clinical trials for patients with diffuse pontine tumors is inter-stitial infusion of therapeutic agents, and the rationale for that approach is described in detail. Lastly, autopsy should be considered for patients who die of diffuse pontine tumors with the goal of obtaining tumor tissue for biological studies that may in the future lead to novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Fisher PG, Breiter SN, Carson BS, et al.: A clinicopathologic reappraisal of brain stem tumor classification. Identification of pilocystic astrocytoma and fibrillary astrocytoma as distinct entities. Cancer 2000, 89:1569–1576. The authors identified clinical parameters that correlated with pathology (pilocytic versus fibrillary astrocytoma).

    Article  PubMed  CAS  Google Scholar 

  2. Epstein FJ, Farmer JP: Brain-stem glioma growth pat-terns. J Neurosurg 1993, 78:408–412.

    PubMed  CAS  Google Scholar 

  3. Kaplan AM, Albright AL, Zimmerman RA, et al.: Brainstem gliomas in children: A Children’s Cancer Group review of 119 cases. Pediatr Neurosurg 1996, 24:185–192.

    Article  PubMed  CAS  Google Scholar 

  4. Molloy PT, Bilaniuk LT, Vaughan SN, et al.: Brainstem tumors in patients with neurofibromatosis type 1: A distinct clinical entity. Neurology 1995, 45:1897–1902.

    PubMed  CAS  Google Scholar 

  5. Bleyer WA: Epidemiologic impact of children with brain tumors. Childs Nerv Syst 1999, 15:758–763.

    Article  PubMed  CAS  Google Scholar 

  6. Kaatsch P, Rickert CH, Kuhl J, et al.: Population-based epidemiologic data on brain tumors in German chil-dren. Cancer 2001, 92:3155–3164. The population-based nature of the data makes this epidemi-ologic study of pediatric brain tumors valuable.

    Article  PubMed  CAS  Google Scholar 

  7. Albright AL, Packer RJ, Zimmerman R, et al.: Magnetic res-onance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: A report from the Chil-dren’s Cancer Group. Neurosurgery 1993, 33:1026–1030.

    Article  PubMed  CAS  Google Scholar 

  8. Cartmill M, Punt J: Diffuse brain stem glioma: A review of stereotactic biopsies. Childs Nerv Syst 1999, 15:235–238.

    Article  PubMed  CAS  Google Scholar 

  9. Mandell LR, Kadota R, Freeman C, et al.: There is no role for hyperfractionated radiotherapy in the man-agement of children with newly diagnosed diffuse intrinsic brainstem tumors: Results of a Pediatric Oncology Group phase III trial comparing conven-tional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys 1999, 43:959–964. This is a randomized, phase III study that conclusively showed that hyperfractionated radiation therapy was not superior to conventional daily fractionated radiation therapy.

    Article  PubMed  CAS  Google Scholar 

  10. Lewis J, Lucraft H, Gholkar A: UKCCSG study of accel-erated radiotherapy for pediatric brain stem gliomas. Int J Radiat Oncol Biol Phys 1997, 38:925–929.

    Article  PubMed  CAS  Google Scholar 

  11. Jennings MT, Sposto R, Boyett JM, et al.: Preradiation chemotherapy in primary high-risk brainstem tumors: Phase II study CCG-9941 of the Children’s Cancer Group. J Clin Oncol 2002, 20:3431–3437.

    Article  PubMed  CAS  Google Scholar 

  12. Broniscer A, da Costa Leite C, Lanchote VL, et al.: Radiation therapy and high-dose tamoxifen in the treat-ment of patients with diffuse brainstem gliomas: Results of a Brazilian cooperative study. J Clin Oncol 2000, 18:1246–1253.

    PubMed  CAS  Google Scholar 

  13. Sanghavi SN, Needle MN, Krailo MD, et al.: A phase I study of topotecan as a radiosensitizer for brainstem glioma of childhood: First report of the Children’s Cancer Group-0952. Neuro-oncol 2003, 5:8–13.

    Article  PubMed  CAS  Google Scholar 

  14. Marcus KJ, Dutton SC, Barnes P, et al.: A phase I trial of etanidazole and hyperfractionated radiotherapy in children with diffuse brainstem glioma. Int J Radiat Oncol Biol Phys 2003, 55:1182–1185.

    Article  PubMed  Google Scholar 

  15. Freeman CR, Kepner J, Kun LE, et al.: A detrimental effect of a combined chemotherapy-radiotherapy approach in children with diffuse intrinsic brain stem gliomas. Int J Radiat Oncol Biol Phys 2000, 47:561–564.

    Article  PubMed  CAS  Google Scholar 

  16. Dunkel IJ, Garvin JH Jr., Goldman S, et al.: High dose chemotherapy with autologous bone marrow rescue for children with diffuse pontine brain stem tumors. J Neurooncol 1998, 37:67–73.

    Article  PubMed  CAS  Google Scholar 

  17. Bouffet E, Raquin M, Doz F, et al.: Radiotherapy fol-lowed by high dose busulfan and thiotepa. A prospec-tive assessment of high dose chemotherapy in children with diffuse pontine gliomas. Cancer 2000, 88:685–692.

    Article  PubMed  CAS  Google Scholar 

  18. Groothuis DR: The blood-brain and blood-tumor bar-riers: a review of strategies for increasing drug deliv-ery. Neuro-oncol 2000, 2:45–59.

    Article  PubMed  CAS  Google Scholar 

  19. Degen JW, Walbridge S, Vortmeyer AO, et al.: Safety and efficacy of convection-enhanced delivery of gemcitab-ine or carboplatin in a malignant gliomas model in rats. J Neurosurg 2003, 99:893–898.

    PubMed  CAS  Google Scholar 

  20. Bruce JN, Falavigna A, Johnson JP, et al.: Intracerebral clysis in a rat glioma model. Neurosurgery 2000, 46:683–691.

    Article  PubMed  CAS  Google Scholar 

  21. Kaiser MG, Parsa AT, Fine RL, et al.: Tissue distribution and antitumor activity of topotecan delivered by intracerebral clysis in a rat gliomas model. Neurosur-gery 2000, 47:1391–1399.

    Article  CAS  Google Scholar 

  22. Heimberger AB, Archer GE, McLendon RE, et al.: Temo-zolomide delivered by intracerebral microinfusion is safe and efficacious against malignant gliomas in rats. Clin Cancer Res 2000, 6:4148–4153.

    PubMed  CAS  Google Scholar 

  23. Yang W, Barth RF, Adams DM, et al.: Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas. Cancer Res 2002, 62:6552–6558.

    PubMed  CAS  Google Scholar 

  24. Hall WA, Rustamzadeh E, Asher AL: Convection-enhanced delivery in clinical trials. Neurosurg Focus 2003, 14:1–4.

    Google Scholar 

  25. Sandberg DI, Edgar MA, Souweidane MM: Convection-enhanced delivery into the rat brainstem. J Neurosurg 2002, 96:885–891.

    Article  PubMed  Google Scholar 

  26. Occhiogrosso G, Edgar MA, Sandberg DI, Souweidane MM: Prolonged convection-enhanced delivery into the rat brain stem. Neurosurgery 2003, 52:388–394.

    Article  PubMed  Google Scholar 

  27. Sandberg DI, Edgar MA, Souweidane MM: Effect of hyperosmolar mannitol on convection-enhanced delivery into the rat brainstem. J Neurooncol 2002, 58:187–192.

    Article  PubMed  Google Scholar 

  28. Carson BS, Wu Q, Tyler B, et al.: New approach to tumor therapy for inoperable areas of the brain: chronic intraparenchymal drug delivery. J Neurooncol 2002, 60:151–158.

    Article  PubMed  Google Scholar 

  29. Lonser RR, Walbridge S, Garmestani K, et al.: Successful and safe perfusion of the primate brainstem: in vivo magnetic resonance imaging of macromolecular distri-bution during infusion. J Neurosurg 2002, 97:905–913.

    PubMed  Google Scholar 

  30. Storm PB, Clatterbuck RE, Liu YJ, et al.: A surgical tech-nique for safely placing a drug delivery catheter into the pons of primates: preliminary results of carbopl-atin infusion. Neurosurgery 2003, 52:1169–1177.

    Article  PubMed  Google Scholar 

  31. Souweidane MM, Occhiogrosso G, Mark EB, et al.: Inter-stitial infusion of carmustine in the rat brainstem with systemic administration of O6-benzylguanine. J Neurooncol 2004, 67:319–326.

    Article  PubMed  Google Scholar 

  32. Souweidane MM, Occhiogrosso G, Mark EB, Edgar MA: Interstitial infusion of IL13-PE38QQR in the rat brain stem. J Neurooncol 2004, 67:287–293.

    Article  PubMed  Google Scholar 

  33. Strege RJ, Liu YJ, Kiely A, et al.: Toxicity and cerebrospinal fluid levels of carboplatin chronically infused into the brainstem of a primate. J Neurooncol 2004, 67:327–334.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunkel, I.J., Souweidane, M.M. Brain stem tumors. Curr Treat Options Neurol 7, 315–321 (2005). https://doi.org/10.1007/s11940-005-0041-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-005-0041-z

Keywords

Navigation