Skip to main content

Advertisement

Log in

Emerging Insights into the Esophageal Microbiome

  • Esophagus (PG Iyer, Section Editor)
  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose of review

Analysis of the esophageal microbiome remains a relatively new field of research, and most studies to date have focused on characterizing the esophageal microbiome in states of health and disease. Microbiome alterations have been implicated in the pathogenesis of inflammatory and neoplastic conditions in the colon and elsewhere in the gastrointestinal tract. The epidemiology of various esophageal conditions including Barrett’s esophagus (BE), esophageal adenocarcinoma (EAC), esophageal squamous cell carcinoma (ESCC), and eosinophilic esophagitis (EoE) point to the microbiome as a potential co-factor in disease pathogenesis, and the possibility exists that these microbiome alterations could contribute directly to the inflammatory environments necessary for the carcinogenesis or atopy involved in these conditions.

Recent findings

The native esophageal microbiome is similar in composition to the oral microbiome, with a high relative abundance of the phylum Firmicutes and the genus Streptococcus. Limited studies to date suggest that there are certain microbiome alterations associated with esophageal diseases. Additionally, it may be possible to indirectly assess the esophageal microbiome via non-endoscopic means. This raises the possibility that non-invasive microbiome analysis could be used for disease screening and monitoring.

Summary

Further understanding of the role of the esophageal microbiome in disease pathogenesis, as well as methods for microbiome alteration, may help elucidate future targets for disease modifying therapies, or minimally invasive screening tools in patients at high risk for development of various esophageal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and recommended reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U S A. 2004;101(12):4250–5. https://doi.org/10.1073/pnas.0306398101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. • Gall A, Fero J, McCoy C, Claywell BC, Sanchez CA, Blount PL, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett's esophagus cohort. PLoS One. 2015;10(6):e0129055. Multiple sites sampled in the upper GI tract of BE patients, demonstrating similar microbiome along the upper GI tract within individuals. https://doi.org/10.1371/journal.pone.0129055.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fillon SA, Harris JK, Wagner BD, Kelly CJ, Stevens MJ, Moore W, et al. Novel device to sample the esophageal microbiome--the esophageal string test. PLoS One. 2012;7(9):e42938. https://doi.org/10.1371/journal.pone.0042938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ross-Innes CS, Debiram-Beecham I, O'Donovan M, Walker E, Varghese S, Lao-Sirieix P, et al. Evaluation of a minimally invasive cell sampling device coupled with assessment of trefoil factor 3 expression for diagnosing Barrett's esophagus: a multi-center case-control study. PLoS Med. 2015;12(1):e1001780. https://doi.org/10.1371/journal.pmed.1001780.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Elliott DRF, Walker AW, O'Donovan M, Parkhill J, Fitzgerald RC. A non-endoscopic device to sample the oesophageal microbiota: a case-control study. Lancet. Gastroenterol Hepatol. 2017;2(1):32–42.

    Google Scholar 

  6. Yu G, Gail MH, Shi J, Klepac-Ceraj V, Paster BJ, Dye BA, et al. Association between upper digestive tract microbiota and cancer-predisposing states in the esophagus and stomach. Cancer Epidemiol Biomark Prev. 2014;23(5):735–41. https://doi.org/10.1158/1055-9965.EPI-13-0855.

    Article  Google Scholar 

  7. Zhang C, Cleveland K, Schnoll-Sussman F, McClure B, Bigg M, Thakkar P, et al. Identification of low abundance microbiome in clinical samples using whole genome sequencing. Genome Biol. 2015;16(1):265. https://doi.org/10.1186/s13059-015-0821-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robinson KM, Crabtree J, Mattick JS, Anderson KE, Dunning Hotopp JC. Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data. Microbiome. 2017;5(1):9. https://doi.org/10.1186/s40168-016-0224-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mannell A, Plant M, Frolich J. The microflora of the oesophagus. Ann R Coll Surg Engl. 1983;65(3):152–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Snider EJ, Freedberg DE, Abrams JA. Potential role of the microbiome in Barrett's esophagus and esophageal adenocarcinoma. Dig Dis Sci. 2016;61(8):2217–25. https://doi.org/10.1007/s10620-016-4155-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finlay IG, Wright PA, Menzies T, McArdle CS. Microbial flora in carcinoma of oesophagus. Thorax. 1982;37(3):181–4. https://doi.org/10.1136/thx.37.3.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lau WF, Wong J, Lam KH, Ong GB. Oesophageal microbial flora in carcinoma of the oesophagus. Aust N Z J Surg. 1981;51(1):52–5. https://doi.org/10.1111/j.1445-2197.1981.tb05905.x.

    Article  CAS  PubMed  Google Scholar 

  13. •• Benitez AJ, Hoffmann C, Muir AB, Dods KK, Spergel JM, Bushman FD, et al. Inflammation-associated microbiota in pediatric eosinophilic esophagitis. Microbiome. 2015;3(1):23. Prospective study in EoE demonstrating the impact of elimination diet and reintroduction on the esophageal microbiome. https://doi.org/10.1186/s40168-015-0085-6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. •• Amir I, Konikoff FM, Oppenheim M, Gophna U, Half EE. Gastric microbiota is altered in oesophagitis and Barrett's oesophagus and further modified by proton pump inhibitors. Environ Microbiol. 2014;16(9):2905–14. Demonstrates within-individual changes to the esophageal and gastric aspirate microbiome caused by PPI therapy. https://doi.org/10.1111/1462-2920.12285.

    Article  CAS  PubMed  Google Scholar 

  15. Harris JK, Fang R, Wagner BD, Choe HN, Kelly CJ, Schroeder S, et al. Esophageal microbiome in eosinophilic esophagitis. PLoS One. 2015;10(5):e0128346. https://doi.org/10.1371/journal.pone.0128346.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sanduleanu S, Jonkers D, De Bruine A, Hameeteman W, Stockbrugger RW. Non-helicobacter pylori bacterial flora during acid-suppressive therapy: differential findings in gastric juice and gastric mucosa. Aliment Pharmacol Ther. 2001;15(3):379–88. https://doi.org/10.1046/j.1365-2036.2001.00888.x.

    Article  CAS  PubMed  Google Scholar 

  17. Albenberg LG, GD W. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146(6):1564–72. https://doi.org/10.1053/j.gastro.2014.01.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://doi.org/10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  19. • Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514(7523):508–12. Demonstrates that diet-induced microbiome alterations are capable of promoting intestinal cancer in mice. https://doi.org/10.1038/nature13398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaakoush NO, Lecomte V, Maloney CA, Morris MJ. Cross-talk among metabolic parameters, esophageal microbiota, and host gene expression following chronic exposure to an obesogenic diet. Sci Rep. 2017;7:45753. https://doi.org/10.1038/srep45753.

    Article  PubMed  PubMed Central  Google Scholar 

  21. O'Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. https://doi.org/10.1038/ncomms7342.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Mehta RS, Nishihara R, Cao Y, Song M, Mima K, Qian ZR, et al. Association of Dietary Patterns with Risk of colorectal cancer subtypes classified by fusobacterium nucleatum in tumor tissue. JAMA Oncol. 2017;3(7):921–7. Demonstrates that the effects of diet on colon cancer risk are mediated in part by the microbiome. https://doi.org/10.1001/jamaoncol.2016.6374.

    PubMed  Google Scholar 

  23. Nobel Y, Snider EJ, Compres G, Freedberg DE, Toussaint N, Abrams JA. Dietary fiber intake is associated with a significantly altered human esophageal microbiome. Gastroenterology. 2017;152(5):S632. https://doi.org/10.1016/S0016-5085(17)32241-2.

    Article  Google Scholar 

  24. Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst. 2008;100(16):1184–7. https://doi.org/10.1093/jnci/djn211.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hur C, Miller M, Yin Kong C, Dowling E, Nattinger K, Dunn M, et al. Trends in esophageal adenocarcinoma incidence and mortality. Cancer. 2013;6(119):1149–58.

    Article  Google Scholar 

  26. Abrams JA, Sharaiha RZ, Gonsalves L, Lightdale CJ, Neugut AI. Dating the rise of esophageal adenocarcinoma: analysis of Connecticut tumor registry data, 1940-2007. Cancer Epidemiol Biomark Prev. 2011;20(1):183–6. https://doi.org/10.1158/1055-9965.EPI-10-0802.

    Article  Google Scholar 

  27. Engel LS, Chow WH, Vaughan TL, Gammon MD, Risch HA, Stanford JL, et al. Population attributable risks of esophageal and gastric cancers. J Natl Cancer Inst. 2003;95(18):1404–13. https://doi.org/10.1093/jnci/djg047.

    Article  PubMed  Google Scholar 

  28. Kong CY, Nattinger KJ, Hayeck TJ, Omer ZB, Wang YC, Spechler SJ, et al. The impact of obesity on the rise in esophageal adenocarcinoma incidence: estimates from a disease simulation model. Cancer Epidemiol Biomark Prev. 2011;20(11):2450–6. https://doi.org/10.1158/1055-9965.EPI-11-0547.

    Article  Google Scholar 

  29. Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL. Overweight and obesity in the United States: prevalence and trends, 1960-1994. Int J Obes Relat Metab Disord. 1998;22(1):39–47. https://doi.org/10.1038/sj.ijo.0800541.

    Article  CAS  PubMed  Google Scholar 

  30. Giovino GA. Epidemiology of tobacco use in the United States. Oncogene. 2002;21(48):7326–40. https://doi.org/10.1038/sj.onc.1205808.

    Article  CAS  PubMed  Google Scholar 

  31. el-Serag HB, Sonnenberg A. Opposing time trends of peptic ulcer and reflux disease. Gut. 1998;43(3):327–33. https://doi.org/10.1136/gut.43.3.327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El-Serag HB. Time trends of gastroesophageal reflux disease: a systematic review. Clin Gastroenterol Hepatol. 2007;5(1):17–26. https://doi.org/10.1016/j.cgh.2006.09.016.

    Article  PubMed  Google Scholar 

  33. Islami F, Kamangar F. Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev Res (Phila). 2008;1(5):329–38. https://doi.org/10.1158/1940-6207.CAPR-08-0109.

    Article  CAS  Google Scholar 

  34. Banatvala N, Mayo K, Megraud F, Jennings R, Deeks JJ, Feldman RA. The cohort effect and helicobacter pylori. J Infect Dis. 1993;168(1):219–21. https://doi.org/10.1093/infdis/168.1.219.

    Article  CAS  PubMed  Google Scholar 

  35. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70(1):3–21. https://doi.org/10.1111/j.1753-4887.2011.00456.x.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137(2):588–97. https://doi.org/10.1053/j.gastro.2009.04.046.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Macfarlane S, Furrie E, Macfarlane GT, Dillon JF. Microbial colonization of the upper gastrointestinal tract in patients with Barrett's esophagus. Clin Infect Dis. 2007;45(1):29–38. https://doi.org/10.1086/518578.

    Article  PubMed  Google Scholar 

  38. Arthur JC, Gharaibeh RZ, Muhlbauer M, Perez-Chanona E, Uronis JM, McCafferty J, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 2014;5:4724. https://doi.org/10.1038/ncomms5724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blackett KL, Siddhi SS, Cleary S, Steed H, Miller MH, Macfarlane S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett's and oesophageal carcinoma: association or causality? Aliment Pharmacol Ther. 2013;37(11):1084–92. https://doi.org/10.1111/apt.12317.

    Article  CAS  PubMed  Google Scholar 

  40. Zaidi AH, Kelly LA, Kreft RE, Barlek M, Omstead AN, Matsui D, et al. Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma. BMC Cancer. 2016;16(1):52. https://doi.org/10.1186/s12885-016-2093-8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang L, Francois F, Pei Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res. 2012;18(8):2138–44. https://doi.org/10.1158/1078-0432.CCR-11-0934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Potter L, Angove H, Richardson D, Cole J. Nitrate reduction in the periplasm of gram-negative bacteria. Adv Microb Physiol. 2001;45:51–112. https://doi.org/10.1016/S0065-2911(01)45002-8.

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki H, Iijima K, Scobie G, Fyfe V, McColl KE. Nitrate and nitrosative chemistry within Barrett's oesophagus during acid reflux. Gut. 2005;54(11):1527–35. https://doi.org/10.1136/gut.2005.066043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15. https://doi.org/10.1016/j.chom.2013.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8. https://doi.org/10.1101/gr.126573.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kapatral V, Anderson I, Ivanova N, Reznik G, Los T, Lykidis A, et al. Genome sequence and analysis of the oral bacterium fusobacterium nucleatum strain ATCC 25586. J Bacteriol. 2002;184(7):2005–18. https://doi.org/10.1128/JB.184.7.2005-2018.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206. https://doi.org/10.1016/j.chom.2013.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ito M, Kanno S, Nosho K, Sukawa Y, Mitsuhashi K, Kurihara H, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015;137(6):1258–68. https://doi.org/10.1002/ijc.29488.

    Article  CAS  PubMed  Google Scholar 

  49. Islami F, Pourshams A, Nasrollahzadeh D, Kamangar F, Fahimi S, Shakeri R, et al. Tea drinking habits and oesophageal cancer in a high risk area in northern Iran: population based case-control study. BMJ. 2009;338(mar26 2):b929. https://doi.org/10.1136/bmj.b929.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cook-Mozaffari PJ, Azordegan F, Day NE, Ressicaud A, Sabai C, Aramesh B. Oesophageal cancer studies in the Caspian littoral of Iran: results of a case-control study. Br J Cancer. 1979;39(3):293–309. https://doi.org/10.1038/bjc.1979.54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cook MB, Chow WH, Devesa SS. Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977-2005. Br J Cancer. 2009;101(5):855–9. https://doi.org/10.1038/sj.bjc.6605246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. •• Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, et al. Human microbiome fusobacterium Nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res. 2016;22(22):5574–81. Demonstrates that F. nucleatum, which may have a causative role in colon cancer, is associated with ESCC outcomes. https://doi.org/10.1158/1078-0432.CCR-16-1786.

    Article  CAS  PubMed  Google Scholar 

  53. Nasrollahzadeh D, Malekzadeh R, Ploner A, Shakeri R, Sotoudeh M, Fahimi S, et al. Variations of gastric corpus microbiota are associated with early esophageal squamous cell carcinoma and squamous dysplasia. Sci Rep. 2015;5(1):8820. https://doi.org/10.1038/srep08820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liacouras CA, Furuta GT, Hirano I, Atkins D, Attwood SE, Bonis PA, et al. Eosinophilic esophagitis: updated consensus recommendations for children and adults. J Allergy Clin Immunol. 2011;128(1):3–20 e6; quiz 21-2. https://doi.org/10.1016/j.jaci.2011.02.040.

    Article  PubMed  Google Scholar 

  55. Sgouros SN, Bergele C, Mantides A. Eosinophilic esophagitis in adults: a systematic review. Eur J Gastroenterol Hepatol. 2006;18(2):211–7. https://doi.org/10.1097/00042737-200602000-00015.

    Article  PubMed  Google Scholar 

  56. Straumann A, Bauer M, Fischer B, Blaser K, Simon HU. Idiopathic eosinophilic esophagitis is associated with a T(H)2-type allergic inflammatory response. J Allergy Clin Immunol. 2001;108(6):954–61. https://doi.org/10.1067/mai.2001.119917.

    Article  CAS  PubMed  Google Scholar 

  57. Roy-Ghanta S, Larosa DF, Katzka DA. Atopic characteristics of adult patients with eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2008;6(5):531–5. https://doi.org/10.1016/j.cgh.2007.12.045.

    Article  PubMed  Google Scholar 

  58. Orenstein SR, Shalaby TM, Di Lorenzo C, Putnam PE, Sigurdsson L, Mousa H, et al. The spectrum of pediatric eosinophilic esophagitis beyond infancy: a clinical series of 30 children. Am J Gastroenterol. 2000;95(6):1422–30. https://doi.org/10.1111/j.1572-0241.2000.02073.x.

    Article  CAS  PubMed  Google Scholar 

  59. Kelley ML Jr, Frazer JP. Symptomatic mid-esophageal webs. JAMA. 1966;197(2):143–6. https://doi.org/10.1001/jama.1966.03110020131047.

    Article  PubMed  Google Scholar 

  60. Attwood SE, Furuta GT. Eosinophilic esophagitis: historical perspective on an evolving disease. Gastroenterol Clin N Am. 2014;43(2):185–99. https://doi.org/10.1016/j.gtc.2014.02.010.

    Article  Google Scholar 

  61. Hruz P, Straumann A, Bussmann C, Heer P, Simon HU, Zwahlen M, et al. Escalating incidence of eosinophilic esophagitis: a 20-year prospective, population-based study in Olten County, Switzerland. J Allergy Clin Immunol. 2011;128(6):1349–1350 e5. https://doi.org/10.1016/j.jaci.2011.09.013.

    Article  PubMed  Google Scholar 

  62. Prasad GA, Alexander JA, Schleck CD, Zinsmeister AR, Smyrk TC, Elias RM, et al. Epidemiology of eosinophilic esophagitis over three decades in Olmsted County, Minnesota. Clin Gastroenterol Hepatol. 2009;7(10):1055–61. https://doi.org/10.1016/j.cgh.2009.06.023.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dellon ES. Epidemiology of eosinophilic esophagitis. Gastroenterol Clin N Am. 2014;43(2):201–18. https://doi.org/10.1016/j.gtc.2014.02.002.

    Article  Google Scholar 

  64. Dellon ES, Jensen ET, Martin CF, Shaheen NJ, Kappelman MD. Prevalence of eosinophilic esophagitis in the United States. Clin Gastroenterol Hepatol. 2014;12(4):589–96 e1. https://doi.org/10.1016/j.cgh.2013.09.008.

    Article  PubMed  Google Scholar 

  65. Dellon ES, Peery AF, Shaheen NJ, Morgan DR, Hurrell JM, Lash RH, et al. Inverse association of esophageal eosinophilia with helicobacter pylori based on analysis of a US pathology database. Gastroenterology. 2011;141(5):1586–92. https://doi.org/10.1053/j.gastro.2011.06.081.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ronkainen J, Talley NJ, Aro P, Storskrubb T, Johansson SE, Lind T, et al. Prevalence of oesophageal eosinophils and eosinophilic oesophagitis in adults: the population-based Kalixanda study. Gut. 2007;56(5):615–20. https://doi.org/10.1136/gut.2006.107714.

    Article  PubMed  Google Scholar 

  67. • Chen X, Winckler B, Lu M, Cheng H, Yuan Z, Yang Y, et al. Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China. PLoS One. 2015;10(12):e0143603. Suggests that specific alterations to the oral microbiome may be a useful marker to screen for ESCC. https://doi.org/10.1371/journal.pone.0143603.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61(4):582–8. https://doi.org/10.1136/gutjnl-2011-300784.

    Article  CAS  PubMed  Google Scholar 

  69. Ahn J, Chen CY, Hayes RB. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control. 2012;23(3):399–404. https://doi.org/10.1007/s10552-011-9892-7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Snider EJ, Nobel YR, Compres G, Freedberg DE, Toussaint NC, Abrams JA. Shifts in the microbiome associated with Barrett’s esophagus and progression to dysplasia and adenocarcinoma. Gastroenterology (DDW Abstract). 2017;152(5):S1011–2. https://doi.org/10.1016/S0016-5085(17)33430-3.

    Article  Google Scholar 

  71. Sawada A, Fujiwara Y, Nagami Y, Tanaka F, Yamagami H, Tanigawa T, et al. Alteration of esophageal microbiome by antibiotic treatment does not affect incidence of rat esophageal adenocarcinoma. Dig Dis Sci. 2016;61(11):3161–8. https://doi.org/10.1007/s10620-016-4263-6.

    Article  CAS  PubMed  Google Scholar 

  72. Holvoet S, Doucet-Ladeveze R, Perrot M, Barretto C, Nutten S, Blanchard C. Beneficial effect of Lactococcus lactis NCC 2287 in a murine model of eosinophilic esophagitis. Allergy. 2016;71(12):1753–61. https://doi.org/10.1111/all.12951.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian A. Abrams MD, MS.

Ethics declarations

Conflict of interest

Michael May and Julian A. Abrams declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Esophagus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

May, M., Abrams, J.A. Emerging Insights into the Esophageal Microbiome. Curr Treat Options Gastro 16, 72–85 (2018). https://doi.org/10.1007/s11938-018-0171-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-018-0171-5

Keywords

Navigation