Mechoulam R. Cannabinoids as therapeutic agents. Boca Raton, Fla.: CRC Press; 1986.
Google Scholar
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 2006;58:389–462.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lutz B. Molecular biology of cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids. 2002;66:123–42.
CAS
PubMed
Article
Google Scholar
25 Legal Medical Marijuana States and DC: Laws, Fees, and Possession Limits, ProCon.org, 2016.
Abood ME. Molecular biology of cannabinoid receptors. Handb Exp Pharmacol. 2005:81–115.
Howlett AC. Cannabinoid receptor signaling. Handb Exp Pharmacol. 2005:53–79.
Tuma RF, Steffens S. Targeting the endocannabinod system to limit myocardial and cerebral ischemic and reperfusion injury. Curr Pharm Biotechnol. 2012;13:46–58.
CAS
PubMed
Article
Google Scholar
Pertwee RG, Ross RA. Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids. 2002;66:101–21.
CAS
PubMed
Article
Google Scholar
Sánchez AJ, García-Merino A. Neuroprotective agents: cannabinoids. Clin Immunol. 2012;142:57–67.
PubMed
Article
CAS
Google Scholar
Herkenham M, Lynn AB, de Costa BR, Richfield EK. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res. 1991;547:267–74.
CAS
PubMed
Article
Google Scholar
Katona I, Sperlágh B, Sík A, Käfalvi A, Vizi ES, Mackie K, Freund TF. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci. 1999;19:4544–58.
CAS
PubMed
Google Scholar
Hájos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, Freund TF. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci. 2000;12:3239–49.
PubMed
Article
Google Scholar
Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008;7:438–55.
CAS
PubMed
Article
Google Scholar
Katona I, Sperlágh B, Maglóczky Z, Sántha E, Köfalvi A, Czirják S, Mackie K, Vizi ES, Freund TF. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience. 2000;100:797–804.
CAS
PubMed
Article
Google Scholar
Elphick MR, Egertová M. The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356:381–408.
CAS
Article
Google Scholar
Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami E, Spatz M. Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res. 2004;132:87–92.
CAS
PubMed
Article
Google Scholar
Mestre L, Iñigo PM, Mecha M, Correa FG, Hernangómez-Herrero M, Loría F, Docagne F, Borrell J, Guaza C. Anandamide inhibits Theiler’s virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB(1) receptors. J Neuroinflammation. 2011;8:102.
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu J, Gao B, Mirshahi F, Sanyal AJ, Khanolkar AD, Makriyannis A, Kunos G. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J. 2000;346(Pt 3):835–40.
CAS
PubMed
PubMed Central
Article
Google Scholar
Storr MA, Yüce B, Andrews CN, Sharkey KA. The role of the endocannabinoid system in the pathophysiology and treatment of irritable bowel syndrome. Neurogastroenterol Motil. 2008;20:857–68.
CAS
PubMed
Article
Google Scholar
Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S. Localisation of cannabinoid CB(1) receptor immunoreactivity in the Guinea pig and rat myenteric plexus. J Comp Neurol. 2002;448:410–22.
CAS
PubMed
Article
Google Scholar
Kulkarni-Narla A, Brown DR. Localization of CB1-cannabinoid receptor immunoreactivity in the porcine enteric nervous system. Cell Tissue Res. 2000;302:73–80.
CAS
PubMed
Article
Google Scholar
Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther. 2010;126:21–38.
CAS
PubMed
Article
Google Scholar
Nasser Y, Bashashati M, Andrews CN. Toward modulation of the endocannabinoid system for treatment of gastrointestinal disease: FAAHster but not "higher. Neurogastroenterol Motil. 2014;26:447–54.
CAS
PubMed
Article
Google Scholar
Bouaboula M, Rinaldi M, Carayon P, Carillon C, Delpech B, Shire D, Le Fur G, Casellas P. Cannabinoid-receptor expression in human leukocytes. Eur J Biochem. 1993;214:173–80.
CAS
PubMed
Article
Google Scholar
Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.
CAS
PubMed
Article
Google Scholar
Färber K, Kettenmann H. Physiology of microglial cells. Brain Res Brain Res Rev. 2005;48:133–43.
PubMed
Article
CAS
Google Scholar
Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071:10–23.
CAS
PubMed
Article
Google Scholar
Duncan M, Mouihate A, Mackie K, Keenan CM, Buckley NE, Davison JS, Patel KD, Pittman QJ, Sharkey KA. Cannabinoid CB2 receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats. Am J Physiol Gastrointest Liver Physiol. 2008;295:G78–87.
CAS
PubMed
PubMed Central
Article
Google Scholar
Storr M, Gaffal E, Saur D, Schusdziarra V, Allescher HD. Effect of cannabinoids on neural transmission in rat gastric fundus. Can J Physiol Pharmacol. 2002;80:67–76.
CAS
PubMed
Article
Google Scholar
Yang H, Zhou J, Lehmann C. GPR55 - a putative "type 3" cannabinoid receptor in inflammation. J Basic Clin Physiol Pharmacol. 2016;27:297–302.
CAS
PubMed
Article
Google Scholar
Schicho R, Storr M. A potential role for GPR55 in gastrointestinal functions. Curr Opin Pharmacol. 2012;12:653–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Shore DM, Reggio PH. The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Front Pharmacol. 2015;6:69.
PubMed
PubMed Central
Article
CAS
Google Scholar
Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.
CAS
PubMed
PubMed Central
Article
Google Scholar
Li K, Fichna J, Schicho R, Saur D, Bashashati M, Mackie K, Li Y, Zimmer A, Göke B, Sharkey KA, Storr M. A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. Neuropharmacology. 2013;71:255–63 Novel research exploring the role of GPR55 in affecting colonic motility. It showed that O-1602, a GPR55 agonist, was able to slow colonic motility. This is important because ligands for GPR55 may lack the central side effects of other cannabinoid agents.
CAS
PubMed
PubMed Central
Article
Google Scholar
Begg M, Pacher P, Bátkai S, Osei-Hyiaman D, Offertáler L, Mo FM, Liu J, Kunos G. Evidence for novel cannabinoid receptors. Pharmacol Ther. 2005;106:133–45.
CAS
PubMed
Article
Google Scholar
Cluny NL, Keenan CM, Lutz B, Piomelli D, Sharkey KA. The identification of peroxisome proliferator-activated receptor alpha-independent effects of oleoylethanolamide on intestinal transit in mice. Neurogastroenterol Motil. 2009;21:420–9.
CAS
PubMed
Article
Google Scholar
Berdyshev EV. Cannabinoid receptors and the regulation of immune response. Chem Phys Lipids. 2000;108:169–90.
CAS
PubMed
Article
Google Scholar
Rhee MH, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem. 1998;71:1525–34.
CAS
PubMed
Article
Google Scholar
Rhee MH, Nevo I, Avidor-Reiss T, Levy R, Vogel Z. Differential superactivation of adenylyl cyclase isozymes after chronic activation of the CB(1) cannabinoid receptor. Mol Pharmacol. 2000;57:746–52.
CAS
PubMed
Google Scholar
Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron. 2006;49:67–79.
CAS
PubMed
Article
Google Scholar
Rivest S. Cannabinoids in microglia: a new trick for immune surveillance and neuroprotection. Neuron. 2006;49:4–8.
CAS
PubMed
Article
Google Scholar
Mukhopadhyay S, Shim JY, Assi AA, Norford D, Howlett AC. CB(1) cannabinoid receptor-G protein association: a possible mechanism for differential signaling. Chem Phys Lipids. 2002;121:91–109.
CAS
PubMed
Article
Google Scholar
Mackie K, Hille B. Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci U S A. 1992;89:3825–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR. Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Phys. 1999;276:H2085–93.
CAS
Google Scholar
Mackie K, Lai Y, Westenbroek R, Mitchell R. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci. 1995;15:6552–61.
CAS
PubMed
Google Scholar
Gómez Del Pulgar T, De Ceballos ML, Guzmán M, Velasco G. Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem. 2002;277:36527–33.
PubMed
Article
CAS
Google Scholar
Gómez del Pulgar T, Velasco G, Guzmán M. The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J. 2000;347:369–73.
PubMed
PubMed Central
Article
Google Scholar
Cannich A, Wotjak CT, Kamprath K, Hermann H, Lutz B, Marsicano G. CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem. 2004;11:625–32.
PubMed
PubMed Central
Article
Google Scholar
Merighi S, Gessi S, Varani K, Simioni C, Fazzi D, Mirandola P, Borea PA, Cannabinoid CB. (2) receptors modulate ERK-1/2 kinase signalling and NO release in microglial cells stimulated with bacterial lipopolysaccharide. Br J Pharmacol. 2012;165:1773–88.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bouaboula M, Dussossoy D, Casellas P. Regulation of peripheral cannabinoid receptor CB2 phosphorylation by the inverse agonist SR 144528. Implications for receptor biological responses. J Biol Chem. 1999;274:20397–405.
CAS
PubMed
Article
Google Scholar
Bouaboula M, Poinot-Chazel C, Bourrié B, Canat X, Calandra B, Rinaldi-Carmona M, Le Fur G, Casellas P. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J. 1995;312(Pt 2):637–41.
CAS
PubMed
PubMed Central
Article
Google Scholar
Di Marzo V, Petrosino S. Endocannabinoids and the regulation of their levels in health and disease. Curr Opin Lipidol. 2007;18:129–40.
CAS
PubMed
Article
Google Scholar
Bifulco M, Laezza C, Valenti M, Ligresti A, Portella G, Marzo VDI. A new strategy to block tumor growth by inhibiting endocannabinoid inactivation. FASEB J. 2004;18:1606–8.
CAS
PubMed
Google Scholar
Vandevoorde S, Fowler CJ. Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate. Br J Pharmacol. 2005;145:885–93.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nicolussi S, Gertsch J. Endocannabinoid transport revisited. Vitam Horm. 2015;98:441–85 This chapter explores the function of the EMT which is emerging as a target of pharmacological research.
CAS
PubMed
Article
Google Scholar
D.A. Drossman, Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV, Gastroenterology, (2016).
Saito YA, Schoenfeld P, Locke GR. The epidemiology of irritable bowel syndrome in North America: a systematic review. Am J Gastroenterol. 2002;97:1910–5.
PubMed
Google Scholar
Pertwee RG. Cannabinoids and the gastrointestinal tract. Gut. 2001;48:859–67.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hornby PJ, Prouty SM. Involvement of cannabinoid receptors in gut motility and visceral perception. Br J Pharmacol. 2004;141:1335–45.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pinto L, Capasso R, Di Carlo G, Izzo AA. Endocannabinoids and the gut. Prostaglandins Leukot Essent Fatty Acids. 2002;66:333–41.
CAS
PubMed
Article
Google Scholar
Pinto L, Izzo AA, Cascio MG, Bisogno T, Hospodar-Scott K, Brown DR, Mascolo N, Di Marzo V, Capasso F. Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology. 2002;123:227–34.
CAS
PubMed
Article
Google Scholar
Abalo R, Chen C, Vera G, Fichna J, Thakur GA, López-Pérez AE, Makriyannis A, Martín-Fontelles MI, Storr M. In vitro and non-invasive in vivo effects of the cannabinoid-1 receptor agonist AM841 on gastrointestinal motor function in the rat. Neurogastroenterol Motil. 2015;27:1721–35 The article explores the use of a new mega-agonist, AM841 which was able to inhibit GI transit in a CB
1
R dependent manner at doses that did not elicit central CB
1
R side effects.
CAS
PubMed
Article
Google Scholar
Keenan CM, Storr MA, Thakur GA, Wood JT, Wager-Miller J, Straiker A, Eno MR, Nikas SP, Bashashati M, Hu H, Mackie K, Makriyannis A, Sharkey KA. AM841, a covalent cannabinoid ligand, powerfully slows gastrointestinal motility in normal and stressed mice in a peripherally restricted manner. Br J Pharmacol. 2015;172:2406–18 Also explores the use of AM841 in slowing GI motility without central side effects. This could potentially allow for less restricted use of cannabinoid agents.
CAS
PubMed
PubMed Central
Article
Google Scholar
Li XH, Lin ML, Wang ZL, Wang P, Tang HH, Lin YY, Li N, Fang Q, Wang R. Central administrations of hemopressin and related peptides inhibit gastrointestinal motility in mice. Neurogastroenterol Motil. 2016;28:891–9 Explores the use of a novel group of CB
1
R agonists, hemopressin, and their ability to slow GI motility through a CB
1
R dependent manner.
CAS
PubMed
Article
Google Scholar
Wong BS, Camilleri M, Busciglio I, Carlson P, Szarka LA, Burton D, Zinsmeister AR. Pharmacogenetic trial of a cannabinoid agonist shows reduced fasting colonic motility in patients with nonconstipated irritable bowel syndrome. Gastroenterology. 2011;141:1638–47 e1631-1637.
CAS
PubMed
PubMed Central
Article
Google Scholar
Grider JR, Mahavadi S, Li Y, Qiao LY, Kuemmerle JF, Murthy KS, Martin BR. Modulation of motor and sensory pathways of the peristaltic reflex by cannabinoids. Am J Physiol Gastrointest Liver Physiol. 2009;297:G539–49.
CAS
PubMed
PubMed Central
Article
Google Scholar
Abalo R, Vera G, López-Pérez AE, Martínez-Villaluenga M, Martín-Fontelles MI. The gastrointestinal pharmacology of cannabinoids: focus on motility. Pharmacology. 2012;90:1–10.
CAS
PubMed
Article
Google Scholar
Sibaev A, Yüce B, Kemmer M, Van Nassauw L, Broedl U, Allescher HD, Göke B, Timmermans JP, Storr M. Cannabinoid-1 (CB1) receptors regulate colonic propulsion by acting at motor neurons within the ascending motor pathways in mouse colon. Am J Physiol Gastrointest Liver Physiol. 2009;296:G119–28.
CAS
PubMed
Article
Google Scholar
Izzo AA, Fezza F, Capasso R, Bisogno T, Pinto L, Iuvone T, Esposito G, Mascolo N, Di Marzo V, Capasso F. Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol. 2001;134:563–70.
CAS
PubMed
PubMed Central
Article
Google Scholar
Izzo AA, Mascolo N, Pinto L, Capasso R, Capasso F. The role of cannabinoid receptors in intestinal motility, defaecation and diarrhoea in rats. Eur J Pharmacol. 1999;384:37–42.
CAS
PubMed
Article
Google Scholar
Mathison R, Ho W, Pittman QJ, Davison JS, Sharkey KA. Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats. Br J Pharmacol. 2004;142:1247–54.
CAS
PubMed
PubMed Central
Article
Google Scholar
Capasso R, Matias I, Lutz B, Borrelli F, Capasso F, Marsicano G, Mascolo N, Petrosino S, Monory K, Valenti M, Di Marzo V, Izzo AA. Fatty acid amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology. 2005;129:941–51.
CAS
PubMed
Article
Google Scholar
Fichna J, Sałaga M, Stuart J, Saur D, Sobczak M, Zatorski H, Timmermans JP, Bradshaw HB, Ahn K, Storr MA. Selective inhibition of FAAH produces antidiarrheal and antinociceptive effect mediated by endocannabinoids and cannabinoid-like fatty acid amides. Neurogastroenterol Motil. 2014;26:470–81.
CAS
PubMed
Article
Google Scholar
Zhang SC, Wang WL, Su PJ, Jiang KL, Yuan ZW. Decreased enteric fatty acid amide hydrolase activity is associated with colonic inertia in slow transit constipation. J Gastroenterol Hepatol. 2014;29:276–83.
PubMed
Article
CAS
Google Scholar
Bashashati M, Nasser Y, Keenan CM, Ho W, Piscitelli F, Nalli M, Mackie K, Storr MA, Di Marzo V, Sharkey KA. Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation. Br J Pharmacol. 2015;172:3099–111 In this report, the authors inhibited DAGL and found a resolution of constipation and increased motility. This occurred in a 2-AG and CB
1
R dependent fashion. DAGL remains a very novel area of drug development for the treatment of constipation.
CAS
PubMed
PubMed Central
Article
Google Scholar
T.R. Harrison, A.S. Fauci, Harrison’s principles of internal medicine, 14th ed., McGraw-Hill, Health Professions Division, New York, 1998.
Kimball ES, Schneider CR, Wallace NH, Hornby PJ. Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol Gastrointest Liver Physiol. 2006;291:G364–71.
CAS
PubMed
Article
Google Scholar
Massa F, Marsicano G, Hermann H, Cannich A, Monory K, Cravatt BF, Ferri GL, Sibaev A, Storr M, Lutz B. The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest. 2004;113:1202–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wright KL, Duncan M, Sharkey KA. Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol. 2008;153:263–70.
CAS
PubMed
Article
Google Scholar
Izzo AA, Pinto L, Borrelli F, Capasso R, Mascolo N, Capasso F. Central and peripheral cannabinoid modulation of gastrointestinal transit in physiological states or during the diarrhoea induced by croton oil. Br J Pharmacol. 2000;129:1627–32.
CAS
PubMed
PubMed Central
Article
Google Scholar
Storr MA, Keenan CM, Emmerdinger D, Zhang H, Yüce B, Sibaev A, Massa F, Buckley NE, Lutz B, Göke B, Brand S, Patel KD, Sharkey KA. Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J Mol Med (Berl). 2008;86:925–36.
CAS
Article
Google Scholar
Sałaga M, Mokrowiecka A, Zakrzewski PK, Cygankiewicz A, Leishman E, Sobczak M, Zatorski H, Małecka-Panas E, Kordek R, Storr M, Krajewska WM, Bradshaw HB, Fichna J. Experimental colitis in mice is attenuated by changes in the levels of endocannabinoid metabolites induced by selective inhibition of fatty acid amide hydrolase (FAAH. J Crohns Colitis. 2014;8:998–1009 In this study, the authors employed PF-3845, a FAAH inhibitor, and found that it diminished colitis. Modulating cannabinoid production and degradation exist as promising avenues to capitalize on the ECS without directly utilizing a CB
1
R agonist.
PubMed
PubMed Central
Article
Google Scholar
Stančić A, Jandl K, Hasenöhrl C, Reichmann F, Marsche G, Schuligoi R, Heinemann A, Storr M, Schicho R. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil. 2015;27:1432–45 The exploration of GPR55 in GI disorders has only started. The authors here utilized a blockage of GPR55 and found that it reduced intestinal inflammation.
PubMed
PubMed Central
Article
CAS
Google Scholar
Naftali T, Mechulam R, Lev LB, Konikoff FM. Cannabis for inflammatory bowel disease. Dig Dis. 2014;32:468–74.
PubMed
Article
Google Scholar
Naftali T, Bar-Lev Schleider L, Dotan I, Lansky EP, Sklerovsky Benjaminov F, Konikoff FM. Cannabis induces a clinical response in patients with Crohn’s disease: a prospective placebo-controlled study. Clin Gastroenterol Hepatol. 2013;11:1276–80 e1271.
CAS
PubMed
Article
Google Scholar
Storr M, Devlin S, Kaplan GG, Panaccione R, Andrews CN. Cannabis use provides symptom relief in patients with inflammatory bowel disease but is associated with worse disease prognosis in patients with Crohn’s disease. Inflamm Bowel Dis. 2014;20:472–80.
PubMed
Article
Google Scholar
D’Argenio G, Petrosino S, Gianfrani C, Valenti M, Scaglione G, Grandone I, Nigam S, Sorrentini I, Mazzarella G, Di Marzo V. Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats. J Mol Med (Berl). 2007;85:523–30.
Article
CAS
Google Scholar
Battista N, Di Sabatino A, Di Tommaso M, Biancheri P, Rapino C, Vidali F, Papadia C, Montana C, Pasini A, Lanzini A, Villanacci V, Corazza GR, Maccarrone M. Abnormal anandamide metabolism in celiac disease. J Nutr Biochem. 2012;23:1245–8.
CAS
PubMed
Article
Google Scholar
Sharkey KA, Darmani NA, Parker LA. Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system. Eur J Pharmacol. 2014;722:134–46.
CAS
PubMed
Article
Google Scholar
Schicho R, Storr M. Targeting the endocannabinoid system for gastrointestinal diseases: future therapeutic strategies. Expert Rev Clin Pharmacol. 2010;3:193–207.
CAS
PubMed
Article
Google Scholar
Darmani NA, McClanahan BA, Trinh C, Petrosino S, Valenti M, Di Marzo V. Cisplatin increases brain 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew. Neuropharmacology. 2005;49:502–13.
CAS
PubMed
Article
Google Scholar
Darmani NA. The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by delta(9)-tetrahydrocannabinol and other cannnabinoids. J Pharmacol Exp Ther. 2002;300:34–42.
CAS
PubMed
Article
Google Scholar
Van Sickle MD, Oland LD, Ho W, Hillard CJ, Mackie K, Davison JS, Sharkey KA. Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology. 2001;121:767–74.
CAS
PubMed
Article
Google Scholar
Sharkey KA, Cristino L, Oland LD, Van Sickle MD, Starowicz K, Pittman QJ, Guglielmotti V, Davison JS, Di Marzo V. Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret. Eur J Neurosci. 2007;25:2773–82.
CAS
PubMed
Article
Google Scholar
Cross-Mellor SK, Ossenkopp KP, Piomelli D, Parker LA. Effects of the FAAH inhibitor, URB597, and anandamide on lithium-induced taste reactivity responses: a measure of nausea in the rat. Psychopharmacology. 2007;190:135–43.
CAS
PubMed
Article
Google Scholar
Meiri E, Jhangiani H, Vredenburgh JJ, Barbato LM, Carter FJ, Yang HM, Baranowski V. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Curr Med Res Opin. 2007;23:533–43.
CAS
PubMed
Article
Google Scholar
Machado Rocha FC, Stéfano SC, De Cássia Haiek R, Rosa Oliveira LM, Da Silveira DX. Therapeutic use of Cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: systematic review and meta-analysis. Eur J Cancer Care (Engl). 2008;17:431–43.
CAS
Article
Google Scholar
Duran M, Pérez E, Abanades S, Vidal X, Saura C, Majem M, Arriola E, Rabanal M, Pastor A, Farré M, Rams N, Laporte JR, Capellà D. Preliminary efficacy and safety of an oromucosal standardized cannabis extract in chemotherapy-induced nausea and vomiting. Br J Clin Pharmacol. 2010;70:656–63.
CAS
PubMed
PubMed Central
Article
Google Scholar
Galli JA, Sawaya RA, Friedenberg FK. Cannabinoid hyperemesis syndrome. Curr Drug Abuse Rev. 2011;4:241–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ishaq S, Ismail S, Ghaus S. Roop-E-Zahra, K. Rostami, cannabinoid hyperemesis should be recognised as an effect of chronic cannabis abuse. Gastroenterol Hepatol Bed Bench. 2014;7:173–6.
PubMed
PubMed Central
Google Scholar
Callén L, Moreno E, Barroso-Chinea P, Moreno-Delgado D, Cortés A, Mallol J, Casadó V, Lanciego JL, Franco R, Lluis C, Canela EI, McCormick PJ. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J Biol Chem. 2012;287:20851–65.
PubMed
PubMed Central
Article
CAS
Google Scholar
Malik Z, Baik D, Schey R. The role of cannabinoids in regulation of nausea and vomiting, and visceral pain. Curr Gastroenterol Rep. 2015;17:429.
PubMed
Article
Google Scholar
Ravnefjord A, Brusberg M, Kang D, Bauer U, Larsson H, Lindström E, Martinez V. Involvement of the transient receptor potential vanilloid 1 (TRPV1) in the development of acute visceral hyperalgesia during colorectal distension in rats. Eur J Pharmacol. 2009;611:85–91.
CAS
PubMed
Article
Google Scholar
Booker L, Naidu PS, Razdan RK, Mahadevan A, Lichtman AH. Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception. Drug Alcohol Depend. 2009;105:42–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sanson M, Bueno L, Fioramonti J. Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in rats. Neurogastroenterol Motil. 2006;18:949–56.
CAS
PubMed
Article
Google Scholar
Brusberg M, Arvidsson S, Kang D, Larsson H, Lindström E, Martinez V. CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. J Neurosci. 2009;29:1554–64.
CAS
PubMed
Article
Google Scholar
Naidu PS, Booker L, Cravatt BF, Lichtman AH. Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception. J Pharmacol Exp Ther. 2009;329:48–56.
CAS
PubMed
Article
Google Scholar
Neelakantan H, Tallarida RJ, Reichenbach ZW, Tuma RF, Ward SJ, Walker EA. Distinct interactions of cannabidiol and morphine in three nociceptive behavioral models in mice. Behav Pharmacol. 2015;26:304–14.
CAS
PubMed
Article
Google Scholar
Esfandyari T, Camilleri M, Busciglio I, Burton D, Baxter K, Zinsmeister AR. Effects of a cannabinoid receptor agonist on colonic motor and sensory functions in humans: a randomized, placebo-controlled study. Am J Physiol Gastrointest Liver Physiol. 2007;293:G137–45.
CAS
PubMed
Article
Google Scholar
Esfandyari T, Camilleri M, Ferber I, Burton D, Baxter K, Zinsmeister AR. Effect of a cannabinoid agonist on gastrointestinal transit and postprandial satiation in healthy human subjects: a randomized, placebo-controlled study. Neurogastroenterol Motil. 2006;18:831–8.
CAS
PubMed
Article
Google Scholar
Klooker TK, Leliefeld KE, Van Den Wijngaard RM, Boeckxstaens GE. The cannabinoid receptor agonist delta-9-tetrahydrocannabinol does not affect visceral sensitivity to rectal distension in healthy volunteers and IBS patients. Neurogastroenterol Motil. 2011;23:30–5 e32.
CAS
PubMed
Article
Google Scholar
Park JM, Choi MG, Cho YK, Lee IS, Kim SW, Choi KY, Chung IS. Cannabinoid receptor 1 gene polymorphism and irritable bowel syndrome in the Korean population: a hypothesis-generating study. J Clin Gastroenterol. 2011;45:45–9.
CAS
PubMed
Article
Google Scholar
Z. Malik, L. Bayman, J. Valestin, A. Rizvi-Toner, S. Hashmi, R. Schey, Dronabinol increases pain threshold in patients with functional chest pain: a pilot double-blind placebo-controlled trial, Dis Esophagus, (2016).
Reichenbach ZW, Sloan J, Rizvi-Toner A, Bayman L, Valestin J, Schey R. A 4-week pilot study with the cannabinoid receptor agonist dronabinol and its effect on metabolic parameters in a randomized trial. Clin Ther. 2015;37:2267–74.
PubMed
Article
CAS
Google Scholar
Kikuchi A, Ohashi K, Sugie Y, Sugimoto H, Omura H. Pharmacological evaluation of a novel cannabinoid 2 (CB2) ligand, PF-03550096, in vitro and in vivo by using a rat model of visceral hypersensitivity. J Pharmacol Sci. 2008;106:219–24.
CAS
PubMed
Article
Google Scholar
Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merour E, Geboes K, Chamaillard M, Ouwehand A, Leyer G, Carcano D, Colombel JF, Ardid D, Desreumaux P. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13:35–7.
CAS
PubMed
Article
Google Scholar
Feng CC, Yan XJ, Chen X, Wang EM, Liu Q, Zhang LY, Chen J, Fang JY, Chen SL. Vagal anandamide signaling via cannabinoid receptor 1 contributes to luminal 5-HT modulation of visceral nociception in rats. Pain. 2014;155:1591–604.
CAS
PubMed
Article
Google Scholar
M. Bashashati, I. Sarosiek, R.W. McCallum, Epidemiology and mechanisms of gastroesophageal reflux disease in the elderly: a perspective, Ann N Y Acad Sci, (2016).
Di Carlo G, Izzo AA. Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert Opin Investig Drugs. 2003;12:39–49.
CAS
PubMed
Article
Google Scholar
Beaumont H, Jensen J, Carlsson A, Ruth M, Lehmann A, Boeckxstaens G. Effect of delta9-tetrahydrocannabinol, a cannabinoid receptor agonist, on the triggering of transient lower oesophageal sphincter relaxations in dogs and humans. Br J Pharmacol. 2009;156:153–62.
CAS
PubMed
PubMed Central
Article
Google Scholar
Partosoedarso ER, Abrahams TP, Scullion RT, Moerschbaecher JM, Hornby PJ. Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J Physiol. 2003;550:149–58.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lehmann A, Blackshaw LA, Brändén L, Carlsson A, Jensen J, Nygren E, Smid SD. Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology. 2002;123:1129–34.
CAS
PubMed
Article
Google Scholar
Norrod AG, Puffenbarger RA. Genetic polymorphisms of the endocannabinoid system. Chem Biodivers. 2007;4:1926–32.
CAS
PubMed
Article
Google Scholar
Camilleri M, Carlson P, McKinzie S, Zucchelli M, D’Amato M, Busciglio I, Burton D, Zinsmeister AR. Genetic susceptibility to inflammation and colonic transit in lower functional gastrointestinal disorders: preliminary analysis. Neurogastroenterol Motil. 2011;23:935–e398.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jiang Y, Nie Y, Li Y, Zhang L. Association of cannabinoid type 1 receptor and fatty acid amide hydrolase genetic polymorphisms in Chinese patients with irritable bowel syndrome. J Gastroenterol Hepatol. 2014;29:1186–91 Studies genetic variance of the ECS in expression of IBS phenotypes. Underscores the role of the ECS in IBS manifestations.
CAS
PubMed
Article
Google Scholar