Skip to main content

Advertisement

Log in

Swimming: What the Sports Cardiologist Should Know

  • Sports Cardiology (M Wasfy, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

To inform the reader on the current knowledge of the cardiovascular effects of swimming and review the characteristics and treatments of unique cardiac conditions affecting the swimmer including swimming-induced pulmonary edema, long QT syndrome, troponin elevation, and sudden cardiac arrest/death.

Recent findings

New research has characterized swimming-induced cardiac remodeling as eccentric remodeling notable for greater left ventricular chamber dilation relative to wall thickening suggesting that swimming primarily challenges the heart with a volume load. Additionally, recent data from triathlons have shown that most sudden deaths occur during the swim segment of the race; however, our understanding of the cause of death remains incomplete.

Summary

Cardiovascular management of the competitive swimmer is currently based on experience and anecdotal evidence. Future studies are needed to help improve our understanding of the physiologic remodeling in response to swimming and to better understand the risks and treatment of cardiovascular diseases that are uniquely encountered by swimmers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and recommended reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Epstein M. Renal effects of head-out water immersion in man: implications for an understanding of volume homeostasis. Physiol Rev. 1978;58(3):529–81. https://doi.org/10.1152/physrev.1978.58.3.529.

    Article  CAS  PubMed  Google Scholar 

  2. Arborelius M Jr, Ballidin UI, Lilja B, Lundgren CE. Hemodynamic changes in man during immersion with the head above water. Aerosp Med. 1972;43(6):592–8.

    PubMed  Google Scholar 

  3. Lazar JM, Khanna N, Chesler R, Salciccioli L. Swimming and the heart. Int J Cardiol. 2013;168(1):19–26. https://doi.org/10.1016/j.ijcard.2013.03.063.

    Article  PubMed  Google Scholar 

  4. USA Swimming Rulebook. USA Swimming, Inc., Colorado Springs. 2020. https://www.usaswimming.org/docs/default-source/rules-regulations/2020-rulebook_update.pdf. Accessed Jul 1, 2020.

  5. FINA Open Water Swimming Rules 2017–2021. 2017. https://www.fina.org/sites/default/files/2017_2021_ows_12092017_ok.pdf. Accessed Jul 21, 2020.

    Google Scholar 

  6. Sramek P, Simeckova M, Jansky L, Savlikova J, Vybiral S. Human physiological responses to immersion into water of different temperatures. Eur J Appl Physiol. 2000;81(5):436–42. https://doi.org/10.1007/s004210050065.

    Article  CAS  PubMed  Google Scholar 

  7. Wester TE, Cherry AD, Pollock NW, Freiberger JJ, Natoli MJ, Schinazi EA, et al. Effects of head and body cooling on hemodynamics during immersed prone exercise at 1 ATA. J Appl Physiol (1985). 2009;106(2):691–700. https://doi.org/10.1152/japplphysiol.91237.2008.

    Article  CAS  Google Scholar 

  8. Park KS, Choi JK, Park YS. Cardiovascular regulation during water immersion. Appl Human Sci. 1999;18(6):233–41. https://doi.org/10.2114/jpa.18.233.

    Article  CAS  PubMed  Google Scholar 

  9. Tipton M, Bradford C. Moving in extreme environments: open water swimming in cold and warm water. Extrem Physiol Med. 2014;3:12. https://doi.org/10.1186/2046-7648-3-12.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pugh LG, Edholm OG. The physiology of channel swimmers. Lancet. 1955;269(6893):761–8. https://doi.org/10.1016/s0140-6736(55)92454-5.

    Article  CAS  PubMed  Google Scholar 

  11. • Baldassarre R, Bonifazi M, Zamparo P, Piacentini MF. Characteristics and Challenges of Open-Water Swimming Performance: A Review. Int J Sports Physiol Perform. 2017;12(10):1275–84. https://doi.org/10.1123/ijspp.2017-0230. This reviews the physiology and challenges of open water swimming including reviewing data on swimming in cold water.

    Article  PubMed  Google Scholar 

  12. Hayward MG, Keatinge WR. Roles of subcutaneous fat and thermoregulatory reflexes in determining ability to stabilize body temperature in water. J Physiol. 1981;320:229–51. https://doi.org/10.1113/jphysiol.1981.sp013946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Knechtle B, Rosemann T, Rust CA. Women cross the ‘Catalina Channel’ faster than men. Springerplus. 2015;4:332. https://doi.org/10.1186/s40064-015-1086-4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Knechtle B, Rosemann T, Lepers R, Rust CA. Women outperform men in ultradistance swimming: the Manhattan Island Marathon Swim from 1983 to 2013. Int J Sports Physiol Perform. 2014;9(6):913–24. https://doi.org/10.1123/ijspp.2013-0375.

    Article  PubMed  Google Scholar 

  15. •• Knechtle B, Dalamitros AA, Barbosa TM, Sousa CV, Rosemann T, Nikolaidis PT. Sex differences in swimming disciplines-can women outperform men in swimming? Int J Environ Res Public Health. 2020;17(10). https://doi.org/10.3390/ijerph17103651. This review highlights the differences between men and women in different swimming disciplines and provides rationale for why women may be better cold long distance open water swimmers than men.

  16. Knechtle B, Baumann B, Knechtle P, Rosemann T. Speed during training and anthropometric measures in relation to race performance by male and female open-water ultra-endurance swimmers. Percept Mot Skills. 2010;111(2):463–74. https://doi.org/10.2466/05.25.PMS.111.5.463-474.

    Article  PubMed  Google Scholar 

  17. McLean SP, Hinrichs RN. Sex differences in the centre of buoyancy location of competitive swimmers. J Sports Sci. 1998;16(4):373–83. https://doi.org/10.1080/02640419808559365.

    Article  CAS  PubMed  Google Scholar 

  18. Zuniga J, Housh TJ, Mielke M, Hendrix CR, Camic CL, Johnson GO, et al. Gender comparisons of anthropometric characteristics of young sprint swimmers. J Strength Cond Res. 2011;25(1):103–8. https://doi.org/10.1519/JSC.0b013e3181b62bf7.

    Article  PubMed  Google Scholar 

  19. Shupak A, Weiler-Ravell D, Adir Y, Daskalovic YI, Ramon Y, Kerem D. Pulmonary oedema induced by strenuous swimming: a field study. Respir Physiol. 2000;121(1):25–31. https://doi.org/10.1016/s0034-5687(00)00109-2.

    Article  CAS  PubMed  Google Scholar 

  20. Miller CC 3rd, Calder-Becker K, Modave F. Swimming-induced pulmonary edema in triathletes. Am J Emerg Med. 2010;28(8):941–6. https://doi.org/10.1016/j.ajem.2009.08.004.

    Article  PubMed  Google Scholar 

  21. •• Grunig H, Nikolaidis PT, Moon RE, Knechtle B. Diagnosis of swimming induced pulmonary edema-a review. Front Physiol. 2017;8:652. https://doi.org/10.3389/fphys.2017.00652. This reviews the diagnosis of swimming induced pulmonary edema by analyzing all cases reported withing scientific literature.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moon RE, Martina SD, Peacher DF, Potter JF, Wester TE, Cherry AD, et al. Swimming-induced pulmonary edema: pathophysiology and risk reduction with sildenafil. Circulation. 2016;133(10):988–96. https://doi.org/10.1161/CIRCULATIONAHA.115.019464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ware LB, Matthay MA. Clinical practice. Acute pulmonary edema. N Engl J Med. 2005;353(26):2788–96. https://doi.org/10.1056/NEJMcp052699.

    Article  CAS  PubMed  Google Scholar 

  24. West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R. Stress failure in pulmonary capillaries. J Appl Physiol (1985). 1991;70(4):1731–42. https://doi.org/10.1152/jappl.1991.70.4.1731.

    Article  CAS  Google Scholar 

  25. West JB, Mathieu-Costello O. Stress failure of pulmonary capillaries as a limiting factor for maximal exercise. Eur J Appl Physiol Occup Physiol. 1995;70(2):99–108. https://doi.org/10.1007/BF00361536.

    Article  CAS  PubMed  Google Scholar 

  26. Adir Y, Shupak A, Gil A, Peled N, Keynan Y, Domachevsky L, et al. Swimming-induced pulmonary edema: clinical presentation and serial lung function. Chest. 2004;126(2):394–9. https://doi.org/10.1378/chest.126.2.394.

    Article  PubMed  Google Scholar 

  27. • Shah AB. AL Swimming-Induced Pulmonary Edema. 2018. https://www.acc.org/latest-in-cardiology/articles/2018/08/14/06/49/swimming-induced-pulmonary-edema. Accessed Feb 25, 2020. This provides a case illustration, review the potential mechanism of swimming induced pulmonary edema and provides a strategy for treatment.

  28. Weiler-Ravell D, Shupak A, Goldenberg I, Halpern P, Shoshani O, Hirschhorn G, et al. Pulmonary oedema and haemoptysis induced by strenuous swimming. BMJ. 1995;311(7001):361–2. https://doi.org/10.1136/bmj.311.7001.361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peacher DF, Martina SD, Otteni CE, Wester TE, Potter JF, Moon RE. Immersion pulmonary edema and comorbidities: case series and updated review. Med Sci Sports Exerc. 2015;47(6):1128–34. https://doi.org/10.1249/MSS.0000000000000524.

    Article  PubMed  Google Scholar 

  30. Gempp E, Demaistre S, Louge P. Hypertension is predictive of recurrent immersion pulmonary edema in scuba divers. Int J Cardiol. 2014;172(2):528–9. https://doi.org/10.1016/j.ijcard.2014.01.021.

    Article  PubMed  Google Scholar 

  31. Ludwig BB, Mahon RT, Schwartzman EL. Cardiopulmonary function after recovery from swimming-induced pulmonary edema. Clin J Sport Med. 2006;16(4):348–51. https://doi.org/10.1097/00042752-200,607,000-00011.

  32. ••Martina SD, Freiberger JJ, Peacher DF, Natoli MJ, Schinazi EA, Kernagis DN, et al. Sildenafil: possible prophylaxis against swimming-induced pulmonary edema. Med Sci Sports Exerc. 2017;49(9):1755–7. https://doi.org/10.1249/MSS.0000000000001293. This article presents a case of oral sildenafil being used as prophylactic treatment in a patient with a history of swimming-induced pulmonary edema by studying the intravascular hemodynamics before and after sildenafil use.

  33. The World Anti-Doping Code International Standard Prohibited List 2020. https://www.wada-ama.org/sites/default/files/wada_2020_english_prohibited_list_0.pdf. Accessed Jul 28, 2020.

  34. Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82(4):521–4. https://doi.org/10.7326/0003-4819-82-4-521.

    Article  CAS  PubMed  Google Scholar 

  35. Baggish AL, Wang F, Weiner RB, Elinoff JM, Tournoux F, Boland A, et al. Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol (1985). 2008;104(4):1121–8. https://doi.org/10.1152/japplphysiol.01170.2007.

    Article  Google Scholar 

  36. Wasfy MM, Weiner RB, Wang F, Berkstresser B, Lewis GD, DeLuca JR, et al. Endurance exercise-induced cardiac remodeling: not all sports are created equal. J Am Soc Echocardiogr. 2015;28(12):1434–40. https://doi.org/10.1016/j.echo.2015.08.002.

    Article  PubMed  Google Scholar 

  37. Finocchiaro G, Dhutia H, D’Silva A, Malhotra A, Steriotis A, Millar L, et al. Effect of sex and sporting discipline on LV adaptation to exercise. JACC Cardiovascular imaging. 2017;10(9):965–72. https://doi.org/10.1016/j.jcmg.2016.08.011.

    Article  PubMed  Google Scholar 

  38. Levine BD, Baggish AL, Kovacs RJ, Link MS, Maron MS, Mitchell JH. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 1: Classification of sports: dynamic, static, and impact: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2350–5. https://doi.org/10.1016/j.jacc.2015.09.033.

    Article  PubMed  Google Scholar 

  39. Triposkiadis F, Ghiokas S, Skoularigis I, Kotsakis A, Giannakoulis I, Thanopoulos V. Cardiac adaptation to intensive training in prepubertal swimmers. Eur J Clin Invest. 2002;32(1):16–23. https://doi.org/10.1046/j.0014-2972.2001.00939.x.

    Article  CAS  PubMed  Google Scholar 

  40. Obert P, Stecken F, Courteix D, Lecoq AM, Guenon P. Effect of long-term intensive endurance training on left ventricular structure and diastolic function in prepubertal children. Int J Sports Med. 1998;19(2):149–54. https://doi.org/10.1055/s-2007-971,897.

    Article  CAS  PubMed  Google Scholar 

  41. Medved R, Fabecic-Sabadi V, Medved V. Echocardiographic findings in children participating in swimming training. Int J Sports Med. 1986;7(2):94–9. https://doi.org/10.1055/s-2008-1,025,741.

    Article  CAS  PubMed  Google Scholar 

  42. Colan SD, Sanders SP, MacPherson D, Borow KM. Left ventricular diastolic function in elite athletes with physiologic cardiac hypertrophy. J Am Coll Cardiol. 1985;6(3):545–9. https://doi.org/10.1016/s0735-1097(85)80111-x.

    Article  CAS  PubMed  Google Scholar 

  43. Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med. 1991;324(5):295–301. https://doi.org/10.1056/NEJM199101313240504.

    Article  CAS  PubMed  Google Scholar 

  44. Swan PD, Spitler DL. Cardiac dimensions and physical profile of masters level swimmers. J Sports Med Phys Fitness. 1989;29(1):97–103.

    CAS  PubMed  Google Scholar 

  45. Pelliccia A, Culasso F, Di Paolo FM, Maron BJ. Physiologic left ventricular cavity dilatation in elite athletes. Ann Intern Med. 1999;130(1):23–31. https://doi.org/10.7326/0003-4819-130-1-199,901,050-00005.

  46. ••Wasfy MM, Weiner RB, Wang F, Berkstresser B, Deluca J, Hutter AM Jr, et al. Myocardial adaptations to competitive swim training. Med Sci Sports Exerc. 2019;51(10):1987–94. https://doi.org/10.1249/MSS.0000000000002022. This is the first longitudinal repeated measures study in competitive swimmers. The authors were able to define a causal relationship between swim training and swimming specific cardiac remodeling.

  47. Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L, Mereles D, Amr A, Buss S, et al. Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury--a metaanalysis of 45 studies. Clin Chem. 2015;61(10):1246–55. https://doi.org/10.1373/clinchem.2015.240796.

    Article  CAS  PubMed  Google Scholar 

  48. Lara B, Salinero JJ, Gallo-Salazar C, Areces F, Ruiz-Vicente D, Martinez M, et al. Elevation of cardiac troponins after endurance running competitions. Circulation. 2019;139(5):709–11. https://doi.org/10.1161/CIRCULATIONAHA.118.034655.

    Article  PubMed  Google Scholar 

  49. Fortescue EB, Shin AY, Greenes DS, Mannix RC, Agarwal S, Feldman BJ, et al. Cardiac troponin increases among runners in the Boston Marathon. Ann Emerg Med. 2007;49(2):137–43.e1. https://doi.org/10.1016/j.annemergmed.2006.09.024.

    Article  PubMed  Google Scholar 

  50. Shave R, George KP, Atkinson G, Hart E, Middleton N, Whyte G, et al. Exercise-induced cardiac troponin T release: a meta-analysis. Med Sci Sports Exerc. 2007;39(12):2099–106. https://doi.org/10.1249/mss.0b013e318153ff78.

    Article  CAS  PubMed  Google Scholar 

  51. Baker P, Leckie T, Harrington D, Richardson A. Exercise-induced cardiac troponin elevation: An update on the evidence, mechanism and implications. Int J Cardiol Heart Vasc. 2019;22:181–6. https://doi.org/10.1016/j.ijcha.2019.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shave R, Baggish A, George K, Wood M, Scharhag J, Whyte G, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol. 2010;56(3):169–76. https://doi.org/10.1016/j.jacc.2010.03.037.

    Article  CAS  PubMed  Google Scholar 

  53. Legaz-Arrese A, Lopez-Laval I, George K, Jose Puente-Lanzarote J, Castellar-Otin C, Reverter-Masia J, et al. Individual variability of high-sensitivity cardiac troponin levels after aerobic exercise is not mediated by exercise mode. Biomarkers. 2015;20(4):219–24. https://doi.org/10.3109/1354750X.2015.1068851.

  54. •Legaz-Arrese A, Carranza-Garcia LE, Navarro-Orocio R, Valadez-Lira A, Mayolas-Pi C, Munguia-Izquierdo D, et al. Cardiac biomarker release after endurance exercise in male and female adults and adolescents. J Pediatr. 2017;191:96–102. https://doi.org/10.1016/j.jpeds.2017.08.061. This study evaluated the impact of 60 min of swimming on high sensitivity cardiac troponin and NT-proBNP levels.

  55. Cirer-Sastre R, Legaz-Arrese A, Corbi F, Lopez-Laval I, George K, Reverter-Masia J. Influence of maturational status in the exercise-induced release of cardiac troponin T in healthy young swimmers. J Sci Med Sport. 2020. https://doi.org/10.1016/j.jsams.2020.06.019.

  56. Ackerman MJ, Tester DJ, Porter CJ. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc. 1999;74(11):1088–94. https://doi.org/10.4065/74.11.1088.

    Article  CAS  PubMed  Google Scholar 

  57. Schnell F, Behar N, Carre F. Long-QT Syndrome and Competitive Sports. Arrhythm Electrophysiol Rev. 2018;7(3):187–92. https://doi.org/10.15420/aer.2018.39.3.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120(18):1761–7. https://doi.org/10.1161/CIRCULATIONAHA.109.863209.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103(1):89–95. https://doi.org/10.1161/01.cir.103.1.89.

    Article  CAS  PubMed  Google Scholar 

  60. Shattock MJ, Tipton MJ. ‘Autonomic conflict’: a different way to die during cold water immersion? J Physiol. 2012;590(14):3219–30. https://doi.org/10.1113/jphysiol.2012.229864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ishikawa H, Matsushima M, Nagashima M, Osuga A. Screening of children with arrhythmias for arrhythmia development during diving and swimming--face immersion as a substitute for diving and exercise stress testing as a substitute for swimming. Jpn Circ J. 1992;56(9):881–90. https://doi.org/10.1253/jcj.56.881.

    Article  CAS  PubMed  Google Scholar 

  62. Yoshinaga M, Kamimura J, Fukushige T, Kusubae R, Shimago A, Nishi J, et al. Face immersion in cold water induces prolongation of the QT interval and T-wave changes in children with nonfamilial long QT syndrome. Am J Cardiol. 1999;83(10):1494–7, A8. https://doi.org/10.1016/s0002-9149(99)00131-9.

  63. Ackerman MJ, Khositseth A, Tester DJ, Hejlik JB, Shen WK, Porter CB. Epinephrine-induced QT interval prolongation: a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc. 2002;77(5):413–21. https://doi.org/10.4065/77.5.413.

    Article  CAS  PubMed  Google Scholar 

  64. Horner JM, Horner MM, Ackerman MJ. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2011;8(11):1698–704. https://doi.org/10.1016/j.hrthm.2011.05.018.

    Article  PubMed  Google Scholar 

  65. Choi G, Kopplin LJ, Tester DJ, Will ML, Haglund CM, Ackerman MJ. Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation. 2004;110(15):2119–24. https://doi.org/10.1161/01.CIR.0000144471.98080.CA.

    Article  PubMed  Google Scholar 

  66. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103(2):196–200. https://doi.org/10.1161/01.cir.103.2.196.

    Article  CAS  PubMed  Google Scholar 

  67. Tester DJ, Medeiros-Domingo A, Will ML, Ackerman MJ. Unexplained drownings and the cardiac channelopathies: a molecular autopsy series. Mayo Clin Proc. 2011;86(10):941–7. https://doi.org/10.4065/mcp.2011.0373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnson JN, Ackerman MJ. Return to play? Athletes with congenital long QT syndrome. Br J Sports Med. 2013;47(1):28–33. https://doi.org/10.1136/bjsports-2012-091751.

    Article  PubMed  Google Scholar 

  69. Aziz PF, Sweeten T, Vogel RL, Bonney WJ, Henderson J, Patel AR, et al. Sports Participation in Genotype Positive Children With Long QT Syndrome. JACC Clin Electrophysiol. 2015;1(1–2):62–70. https://doi.org/10.1016/j.jacep.2015.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ackerman MJ, Zipes DP, Kovacs RJ, Maron BJ. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 10: The cardiac channelopathies: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2424–8. https://doi.org/10.1016/j.jacc.2015.09.042.

    Article  PubMed  Google Scholar 

  71. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by: Association for European Pediatric and Congenital Cardiology (AEPC). Europace. 2015;17(11):1601–87. https://doi.org/10.1093/europace/euv319.

    Article  PubMed  Google Scholar 

  72. Harmon KG, Asif IM, Maleszewski JJ, Owens DS, Prutkin JM, Salerno JC, et al. Incidence, cause, and comparative frequency of sudden cardiac death in National Collegiate Athletic Association Athletes: A Decade in Review. Circulation. 2015;132(1):10–9. https://doi.org/10.1161/CIRCULATIONAHA.115.015431.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kim JH, Malhotra R, Chiampas G, d’Hemecourt P, Troyanos C, Cianca J, et al. Cardiac arrest during long-distance running races. N Engl J Med. 2012;366(2):130–40. https://doi.org/10.1056/NEJMoa1106468.

  74. ••Harris KM, Creswell LL, Haas TS, Thomas T, Tung M, Isaacson E, et al. Death and cardiac arrest in U.S. triathlon participants, 1985 to 2016: A Case Series. Ann Intern Med. 2017;167(8):529–35. https://doi.org/10.7326/M17-0847. This case series report evaluated death and cardiac arrest among triathlon participants and determined that most cardiac arrests occurred during the swim segment of the triathlon.

  75. (USAT) UT. USA Triathlon Fatality Incidents Study. 2012. https://www.teamusa.org/USA-Triathlon/News/Articles-and-Releases/2012/October/25/102512-Medical-Panel-Report. Accessed Jul 18, 2020.

    Google Scholar 

  76. Harris KM, Henry JT, Rohman E, Haas TS, Maron BJ. Sudden death during the triathlon. JAMA. 2010;303(13):1255–7. https://doi.org/10.1001/jama.2010.368.

    Article  CAS  PubMed  Google Scholar 

  77. Moon RE, Martina SD, Peacher DF, Kraus WE. Deaths in triathletes: immersion pulmonary oedema as a possible cause. BMJ Open Sport Exerc Med. 2016;2(1):e000146. https://doi.org/10.1136/bmjsem-2016-000146.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Asplund CA, Creswell LL. Hypothesized mechanisms of swimming-related death: a systematic review. Br J Sports Med. 2016;50(22):1360–6. https://doi.org/10.1136/bjsports-2015-094722.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit B. Shah MD, MPH.

Ethics declarations

Conflict of interest

Aubrey J. Grant, Arjun Kanwal and Ankit B. Shah declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sports Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, A.J., Kanwal, A. & Shah, A.B. Swimming: What the Sports Cardiologist Should Know. Curr Treat Options Cardio Med 22, 70 (2020). https://doi.org/10.1007/s11936-020-00876-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00876-0

Keywords

Navigation