Skip to main content

Advertisement

Log in

Advances in the Diagnosis and Management of Transthyretin Amyloid Cardiomyopathy

  • Cardio-Oncology (M Fradley, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Transthyretin amyloid cardiomyopathy (ATTR-CM) is a disease with high morbidity and mortality. This disease is significantly underdiagnosed and is more common than previously appreciated, particularly among older adults and people of African descent. This review discusses recent advances in the diagnosis and treatment for ATTR-CM.

Recent findings

Historically, ATTR-CM was diagnosed via endomyocardial biopsy, a resource-intensive and invasive approach. However, in most cases, ATTR-CM can now be diagnosed non-invasively using bone tracer cardiac scintigraphy, which may facilitate earlier diagnosis. In recent clinical trials, a transthyretin stabilizer (tafamidis) and transthyretin gene silencers (patisiran and inotersen) have emerged as effective ATTR amyloidosis therapies and have been approved for use in the USA and many other countries.

Summary

ATTR-CM is now recognized as an important cause of heart failure. Approaches to the diagnosis and treatment of ATTR-CM are rapidly evolving. Now, more than ever, there are opportunities to improve clinical care of patients with this challenging disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grogan M, Scott CG, Kyle RA, Zeldenrust SR, Gertz MA, Lin G, et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol. 2016;68(10):1014–20.

    Google Scholar 

  2. Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369(9):819–29.

    CAS  Google Scholar 

  3. Liepnieks JJ, Zhang LQ, Benson MD. Progression of transthyretin amyloid neuropathy after liver transplantation. Neurology. 2010;75(4):324–7.

    CAS  Google Scholar 

  4. Holmgren G, Steen L, Ekstedt J, Groth CG, Ericzon BG, Eriksson S, et al. Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin Genet. 1991;40(3):242–6.

    CAS  Google Scholar 

  5. Alexander KM, Orav J, Singh A, Jacob SA, Menon A, Padera RF, et al. Geographic disparities in reported US amyloidosis mortality from 1979 to 2015: potential underdetection of cardiac amyloidosis. JAMA Cardiol. 2018;3(9):865–70.

    Google Scholar 

  6. Tanskanen M, Peuralinna T, Polvikoski T, Notkola IL, Sulkava R, Hardy J, et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med. 2008;40(3):232–9.

    CAS  Google Scholar 

  7. Gonzalez-Lopez E, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36(38):2585–94.

    CAS  Google Scholar 

  8. Mohamed-Salem L, Santos-Mateo JJ, Sanchez-Serna J, Hernández-Vicente Á, Reyes-Marle R, Castellón Sánchez MI, et al. Prevalence of wild type ATTR assessed as myocardial uptake in bone scan in the elderly population. Int J Cardiol. 2018;270:192–6.

    Google Scholar 

  9. Jacobson DR, Alexander AA, Tagoe C, Buxbaum JN. Prevalence of the amyloidogenic transthyretin (TTR) V122I allele in 14 333 African-Americans. Amyloid. 2015;22(3):171–4.

    CAS  Google Scholar 

  10. Quarta CC, Buxbaum JN, Shah AM, Falk RH, Claggett B, Kitzman DW, et al. The amyloidogenic V122I transthyretin variant in elderly black Americans. N Engl J Med. 2015;372(1):21–9.

    Google Scholar 

  11. Witteles RM, Bokhari S, Damy T, Elliott PM, Falk RH, Fine NM, et al. Screening for transthyretin amyloid cardiomyopathy in everyday practice. JACC Heart Fail. 2019;7(8):709–16.

    Google Scholar 

  12. Sperry BW, Reyes BA, Ikram A, Donnelly JP, Phelan D, Jaber WA, et al. Tenosynovial and cardiac amyloidosis in patients undergoing carpal tunnel release. J Am Coll Cardiol. 2018;72(17):2040–50.

    Google Scholar 

  13. Nakagawa M, Sekijima Y, Yazaki M, Tojo K, Yoshinaga T, Doden T, et al. Carpal tunnel syndrome: a common initial symptom of systemic wild-type ATTR (ATTRwt) amyloidosis. Amyloid. 2016;23(1):58–63.

    CAS  Google Scholar 

  14. Sekijima Y, Uchiyama S, Tojo K, Sano K, Shimizu Y, Imaeda T, et al. High prevalence of wild-type transthyretin deposition in patients with idiopathic carpal tunnel syndrome: a common cause of carpal tunnel syndrome in the elderly. Hum Pathol. 2011;42(11):1785–91.

    Google Scholar 

  15. Geller HI, Singh A, Alexander KM, Mirto TM, Falk RH. Association between ruptured distal biceps tendon and wild-type transthyretin cardiac amyloidosis. JAMA. 2017;318(10):962–3.

    Google Scholar 

  16. Westermark P, Westermark GT, Suhr OB, Berg S. Transthyretin-derived amyloidosis: probably a common cause of lumbar spinal stenosis. Ups J Med Sci. 2014;119(3):223–8.

    Google Scholar 

  17. Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(22):2872–91.

    CAS  Google Scholar 

  18. Hanna M, Ruberg FL, Maurer MS, Dispenzieri A, Dorbala S, Falk RH, et al. Cardiac scintigraphy with technetium-99m-labeled bone-seeking tracers for suspected amyloidosis. J Am Coll Cardiol. 2020;75(22):2851–62.

    CAS  Google Scholar 

  19. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2-evidence base and standardized methods of imaging. J Nucl Cardiol. 2019;26(6):2065–123.

    Google Scholar 

  20. Maurer MS. Noninvasive identification of ATTRwt cardiac amyloid: the re-emergence of nuclear cardiology. Am J Med. 2015;128(12):1275–80.

    Google Scholar 

  21. Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M, et al. Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis. Circulation. 2014;129(18):1840–9.

    Google Scholar 

  22. Chacko L, Martone R, Cappelli F, Fontana M. Cardiac amyloidosis: updates in imaging. Curr Cardiol Rep. 2019;21(9):108.

    Google Scholar 

  23. Gonzalez-Lopez E, et al. Clinical characteristics of wild-type transthyretin cardiac amyloidosis: disproving myths. Eur Heart J. 2017;38(24):1895–904.

    CAS  Google Scholar 

  24. Pagourelias ED, Mirea O, Duchenne J, van Cleemput J, Delforge M, Bogaert J, et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters. Circ Cardiovasc Imaging. 2017;10(3):e005588.

    Google Scholar 

  25. Martinez-Naharro A, Treibel TA, Abdel-Gadir A, Bulluck H, Zumbo G, Knight DS, et al. Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol. 2017;70(4):466–77.

    CAS  Google Scholar 

  26. Mekinian A, Lions C, Leleu X, Duhamel A, Lamblin N, Coiteux V, et al. Prognosis assessment of cardiac involvement in systemic AL amyloidosis by magnetic resonance imaging. Am J Med. 2010;123(9):864–8.

    Google Scholar 

  27. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 2 of 2-diagnostic criteria and appropriate utilization. J Nucl Cardiol. 2020;27(2):659–73.

    Google Scholar 

  28. Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ. Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson. 2008;10:54.

    Google Scholar 

  29. Knight DS, et al. Cardiac structural and functional consequences of amyloid deposition by cardiac magnetic resonance and echocardiography and their prognostic roles. JACC Cardiovasc Imaging. 2019;12(5):823–33.

    Google Scholar 

  30. Banypersad SM, Sado DM, Flett AS, Gibbs SDJ, Pinney JH, Maestrini V, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2013;6(1):34–9.

    Google Scholar 

  31. Quarta CC, Gonzalez-Lopez E, Gilbertson JA, Botcher N, Rowczenio D, Petrie A, et al. Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis. Eur Heart J. 2017;38(24):1905–8.

    CAS  Google Scholar 

  32. Satoskar AA, Efebera Y, Hasan A, Brodsky S, Nadasdy G, Dogan A, et al. Strong transthyretin immunostaining: potential pitfall in cardiac amyloid typing. Am J Surg Pathol. 2011;35(11):1685–90.

    Google Scholar 

  33. Vrana JA, Gamez JD, Madden BJ, Theis JD, Bergen HR III, Dogan A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood. 2009;114(24):4957–9.

    CAS  Google Scholar 

  34. Bobbio E, Bollano E, Esmaily S, Thomsen C, Noborn F, Sihlbom C, et al. Clinical diagnosis and subtyping of cardiac amyloidosis by mass spectrometry. J Heart Lung Transplant. 2020;39(4S):S234–5.

    Google Scholar 

  35. Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol. 2016;1(8):880–9.

    Google Scholar 

  36. •• Gillmore JD, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12 In this study of 1217 patients referred to amyloid specialty centers, Gillmore et al. found bone scintigraphy to have > 99% sensitivity and 86% specificity for the diagnosis of ATTR cardiomyopathy with most false positives due to AL cardiomyopathy.

  37. • Treglia G, et al. Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: a bivariate meta-analysis. Eur J Nucl Med Mol Imaging. 2018;45(11):1945–55 In this bivariate meta-analysis, Treglia et al. summarize the data regarding the diagnostic accuracy of cardiac scintigraphy for ATTR cardiomyopathy.

  38. Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46(6):1076–84.

    Google Scholar 

  39. Katzmann JA, Clark RJ, Abraham RS, Bryant S, Lymp JF, Bradwell AR, et al. Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin Chem. 2002;48(9):1437–44.

    CAS  Google Scholar 

  40. • Musumeci, M.B., et al., Low sensitivity of bone scintigraphy in detecting Phe64Leu mutation-related transthyretin cardiac amyloidosis. JACC Cardiovasc Imaging, 2019. In a retrospective review, Musumeci et al. found that cardiac scintigraphy may have markedly decreased sensitivity for detection of ATTR cardiomyopathy in patients with the Phe64Leu TTR mutation.

  41. Alexander KM and Witteles RM, Bone scintigraphy imaging for transthyretin cardiac amyloidosis: still much to learn. JACC Cardiovasc Imaging, 2020.

  42. Chang, I.C.Y., et al., Hydroxychloroquine-mediated cardiotoxicity with a false-positive (99m)technetium-labeled pyrophosphate scan for transthyretin-related cardiac amyloidosis. Circ Cardiovasc Imaging, 2018. 11(1).

  43. Glaudemans AW, et al. Bone scintigraphy with (99m)technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid. 2014;21(1):35–44.

    CAS  Google Scholar 

  44. Haq M, Pawar S, Berk JL, Miller EJ, Ruberg FL. Can (99m)Tc-pyrophosphate aid in early detection of cardiac involvement in asymptomatic variant TTR amyloidosis? JACC Cardiovasc Imaging. 2017;10(6):713–4.

    Google Scholar 

  45. Screening for cardiac amyloidosis using nuclear imaging for minority populations. [cited 2020 June 13]; Available from: https://ClinicalTrials.gov/show/NCT03812172.

  46. Transthyretin cardiac amyloidosis in HFpEF. [cited 2020 June 15]; Available from: https://ClinicalTrials.gov/show/NCT03414632.

  47. Prevalence of wild type transthyretin cardiac amyloidosis in patients operated for idiopathic carpal tunnel syndrome. [cited 2020 June 15]; Available from: https://ClinicalTrials.gov/show/NCT03996382.

  48. Cardiac amyloidosis screening at trigger finger release. [cited 2020 June 15]; Available from: https://ClinicalTrials.gov/show/NCT03886155.

  49. Hawkins PN, Ando Y, Dispenzeri A, Gonzalez-Duarte A, Adams D, Suhr OB. Evolving landscape in the management of transthyretin amyloidosis. Ann Med. 2015;47(8):625–38.

    CAS  Google Scholar 

  50. Barrett CD, et al., Outcomes in patients with cardiac amyloidosis undergoing heart transplantation. JACC Heart Fail, 2020.

  51. Bulawa CE, Connelly S, DeVit M, Wang L, Weigel C, Fleming JA, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci U S A. 2012;109(24):9629–34.

    CAS  Google Scholar 

  52. Alexander KM, Evangelisti A, Witteles RM. Emerging therapies for transthyretin cardiac amyloidosis. Curr Treat Options Cardiovasc Med. 2019;21(8):40.

    Google Scholar 

  53. Scott LJ. Tafamidis: a review of its use in familial amyloid polyneuropathy. Drugs. 2014;74(12):1371–8.

    CAS  Google Scholar 

  54. Maurer, M.S., et al., Design and rationale of the phase 3 ATTR-ACT clinical trial (tafamidis in transthyretin cardiomyopathy clinical trial). Circ Heart Fail, 2017. 10(6).

  55. •• Maurer MS, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–16 The ATTR-ACT trial showed that tafamidis reduced mortality and cardiovascular hospitalization in patients with ATTR cardiomyopathy. Tafamidis became the first FDA-approved medication for ATTRwt or ATTRv cardiomyopathy.

  56. Gurwitz JH and Maurer MS, Tafamidis-a pricey therapy for a not-so-rare condition. JAMA Cardiol, 2020.

  57. Kazi DS, Bellows BK, Baron SJ, Shen C, Cohen DJ, Spertus JA, et al. Cost-effectiveness of tafamidis therapy for transthyretin amyloid cardiomyopathy. Circulation. 2020;141(15):1214–24.

    Google Scholar 

  58. Hanson JLS, Arvanitis M, Koch CM, Berk JL, Ruberg FL, Prokaeva T, et al. Use of serum transthyretin as a prognostic indicator and predictor of outcome in cardiac amyloid disease associated with wild-type transthyretin. Circ Heart Fail. 2018;11(2):e004000.

    CAS  Google Scholar 

  59. Judge DP, Heitner SB, Falk RH, Maurer MS, Shah SJ, Witteles RM, et al. Transthyretin stabilization by AG10 in symptomatic transthyretin amyloid cardiomyopathy. J Am Coll Cardiol. 2019;74(3):285–95.

    CAS  Google Scholar 

  60. Gillmore JD, et al. ATTRibute-CM: a randomized, double-blind, placebo-controlled, multi-center, global phase 3 study of AG10 in patients with transthyretin amyloid cardiomyopathy (ATTR-CM). Circulation. 2019;140(Suppl_1):A14214.

    Google Scholar 

  61. Berk JL, Suhr OB, Obici L, Sekijima Y, Zeldenrust SR, Yamashita T, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA. 2013;310(24):2658–67.

    CAS  Google Scholar 

  62. Rosenblum H, et al. TTR (transthyretin) stabilizers are associated with improved survival in patients with TTR cardiac amyloidosis. Circ Heart Fail. 2018;11(4):e004769.

    CAS  Google Scholar 

  63. Ikram A, Donnelly JP, Sperry BW, Samaras C, Valent J, Hanna M. Diflunisal tolerability in transthyretin cardiac amyloidosis: a single center’s experience. Amyloid. 2018;25(3):197–202.

    CAS  Google Scholar 

  64. Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10:109.

    Google Scholar 

  65. Adams D, Suhr OB, Dyck PJ, Litchy WJ, Leahy RG, Chen J, et al. Trial design and rationale for APOLLO, a phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol. 2017;17(1):181.

    Google Scholar 

  66. •• Adams D, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21 In the APOLLO trial, patisiran improved neurological function in patients with ATTRv polyneuropathy. This trial led to patisiran’s FDA approval for ATTRv with polyneuropathy or with mixed polyneuropathy and cardiomyopathy.

  67. Minamisawa M, Claggett B, Adams D, Kristen AV, Merlini G, Slama MS, et al. Association of patisiran, an RNA interference therapeutic, with regional left ventricular myocardial strain in hereditary transthyretin amyloidosis: the APOLLO study. JAMA Cardiol. 2019;4(5):466–72.

    Google Scholar 

  68. • Solomon SD, Adams D, Kristen A, Grogan M, González-Duarte A, Maurer MS, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation. 2019;139(4):431–43 In this secondary analysis of the APOLLO trial, patisiran was associated with improved cardiac parameters, such as LV wall thickness, global longitudinal strain, and NT-proBNP compared with placebo.

  69. Shilling R, et al. Study design and rational of HELIOS-B: a phase 3 study to evaluate the clinical efficacy and safety of vutrisiran in patients with ATTR amyloidosis with cardiomyopathy. J Am Coll Cardiol. 2020;75(11 Supplement 1):3579.

    Google Scholar 

  70. HELIOS-B: a study to evaluate vutrisiran in patients with transthyretin amyloidosis with cardiomyopathy. Available from: https://ClinicalTrials.gov/show/NCT04153149. Accessed 4 July 200.

  71. •• Benson MD, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):22–31 In the NEURO-TTR trial, inotersen was found to slow neurologic decline in patients with ATTRv polyneuropathy. This trial led to inotersen’s FDA approval for ATTRv with polyneuropathy or ATTRv with mixed polyneuropathy and cardiomyopathy.

  72. Falk RH, et al., Rationale and design of a phase 3 study to evaluate the efficacy and safety of ION-682884 in patients with transthyretin-mediated amyloid cardiomyopathy (ATTR-CM). 2019, Am Soc Hematol Washington.

  73. CARDIO-TTRansform: a study to evaluate the efficacy and safety of AKCEA-TTR-LRx in participants with transthyretin-mediated amyloid cardiomyopathy (ATTR CM). [cited 2020 July 4]; Available from: https://ClinicalTrials.gov/show/NCT04136171.

  74. Zhang KW, Stockerl-Goldstein KE, Lenihan DJ. Emerging therapeutics for the treatment of light chain and transthyretin amyloidosis. JACC Basic Transl Sci. 2019;4(3):438–48.

    Google Scholar 

  75. Higaki JN, Chakrabartty A, Galant NJ, Hadley KC, Hammerson B, Nijjar T, et al. Novel conformation-specific monoclonal antibodies against amyloidogenic forms of transthyretin. Amyloid. 2016;23(2):86–97.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald M. Witteles MD.

Ethics declarations

Conflict of Interest

Dr. Spencer-Bonilla does not have any conflict of interest to disclose. Dr. Alexander has received an investigator-initiated research grant from Pfizer and has received consulting fees (modest) from Alnylam, Eidos, and Pfizer. Dr. Witteles has received consulting fees (modest) from Pfizer, Eidos, and Alnylam.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-Oncology

All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spencer-Bonilla, G., Alexander, K.M. & Witteles, R.M. Advances in the Diagnosis and Management of Transthyretin Amyloid Cardiomyopathy. Curr Treat Options Cardio Med 22, 45 (2020). https://doi.org/10.1007/s11936-020-00844-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00844-8

Keywords

Navigation