Skip to main content

Advertisement

Log in

Multimodality Imaging of Aortic Disease

  • Imaging (Q Truong, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Patients with aortic disease should have regular imaging surveillance. The goal of this review is to provide an overview of the etiologies of aortic disease as well as provide information on available imaging modalities including ones that are under investigation.

Recent findings

As routine imaging is required for surveillance of aortic disease, many concerns come up including cumulative radiation and contrast exposure, as well as limitations, availability, and cost of imaging modalities. Novel hybrid imaging modalities hold promise for the prediction of complications related to aortic disease.

Summary

A variety of etiologies can lead to aortic disease which can cause fatal complications if not monitored regularly and intervened when appropriate. Therefore, routine imaging surveillance is critical in patients with aortic disease, especially in high-risk groups. Understanding of advantages and limitations of each imaging technique is important in choosing the right modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Boyer JK, Gutierrez F, Braverman AC. Approach to the dilated aortic root. Curr Opin Cardiol. 2004;19(6):563–9.

    PubMed  Google Scholar 

  2. Kim JB, Spotnitz M, Lindsay ME, MacGillivray TE, Isselbacher EM, Sundt TM 3rd. Risk of aortic dissection in the moderately dilated ascending aorta. J Am Coll Cardiol. 2016;68(11):1209–19.

    PubMed  Google Scholar 

  3. Landenhed M, Engstrom G, Gottsater A, Caulfield MP, Hedblad B, Newton-Cheh C, et al. Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study. J Am Heart Assoc. 2015;4(1):e001513.

    PubMed  PubMed Central  Google Scholar 

  4. Nataf P, Lansac E. Dilation of the thoracic aorta: medical and surgical management. Heart. 2006;92(9):1345–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh MN, Lacro RV. Recent clinical drug trials evidence in Marfan syndrome and clinical implications. Can J Cardiol. 2016;32(1):66–77.

    PubMed  Google Scholar 

  6. Judge DP, Dietz HC. Marfan’s syndrome. Lancet. 2005;366(9501):1965–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sakai LY, Keene DR, Glanville RW, Bachinger HP. Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem. 1991;266(22):14763–70.

    CAS  PubMed  Google Scholar 

  8. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7):476–85.

    CAS  PubMed  Google Scholar 

  9. Roberts WC. The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am J Cardiol. 1970;26(1):72–83.

    CAS  PubMed  Google Scholar 

  10. Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44(1):138–43.

    PubMed  Google Scholar 

  11. Verma S, Siu SC. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med. 2014;370(20):1920–9.

    CAS  PubMed  Google Scholar 

  12. Bonderman D, Gharehbaghi-Schnell E, Wollenek G, Maurer G, Baumgartner H, Lang IM. Mechanisms underlying aortic dilatation in congenital aortic valve malformation. Circulation. 1999;99(16):2138–43.

    CAS  PubMed  Google Scholar 

  13. Ward C. Clinical significance of the bicuspid aortic valve. Heart. 2000;83(1):81–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ayad RF, Grayburn PA, Ko JM, Filardo G, Roberts WC. Accuracy of two-dimensional echocardiography in determining aortic valve structure in patients >50 years of age having aortic valve replacement for aortic stenosis. Am J Cardiol. 2011;108(11):1589–99.

    PubMed  Google Scholar 

  15. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81.

    CAS  PubMed  Google Scholar 

  16. Attias D, Stheneur C, Roy C, Collod-Beroud G, Detaint D, Faivre L, et al. Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders. Circulation. 2009;120(25):2541–9.

    CAS  PubMed  Google Scholar 

  17. Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ. Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet. 1998;77(1):31–7.

    CAS  PubMed  Google Scholar 

  18. Mitchell GF, Conlin PR, Dunlap ME, Lacourciere Y, Arnold JM, Ogilvie RI, et al. Aortic diameter, wall stiffness, and wave reflection in systolic hypertension. Hypertension (Dallas, Tex : 1979). 2008;51(1):105–11.

    CAS  Google Scholar 

  19. Lam CS, Xanthakis V, Sullivan LM, Lieb W, Aragam J, Redfield MM, et al. Aortic root remodeling over the adult life course: longitudinal data from the Framingham Heart Study. Circulation. 2010;122(9):884–90.

    PubMed  PubMed Central  Google Scholar 

  20. Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010;1:134.

    PubMed  PubMed Central  Google Scholar 

  21. Gornik HL, Creager MA. Aortitis. Circulation. 2008;117(23):3039–51.

    PubMed  PubMed Central  Google Scholar 

  22. Restrepo CS, Ocazionez D, Suri R, Vargas D. Aortitis: imaging spectrum of the infectious and inflammatory conditions of the aorta. Radiographics. 2011;31(2):435–51.

    PubMed  Google Scholar 

  23. Paulo N, Cascarejo J, Vouga L. Syphilitic aneurysm of the ascending aorta. Interact Cardiovasc Thorac Surg. 2012;14(2):223–5.

    PubMed  Google Scholar 

  24. Heggtveit HA. Syphilitic Aortitis. A Clinicopathological Autopsy Study of 100 Cases,1950 to1960. Circulation. 1964;29:346–55.

    CAS  PubMed  Google Scholar 

  25. Ozkan Y. Cardiac involvement in ankylosing spondylitis. J Clin Med Res. 2016;8(6):427–30.

    PubMed  PubMed Central  Google Scholar 

  26. Sharma A, Gnanapandithan K, Sharma K, Sharma S. Relapsing polychondritis: a review. Clin Rheumatol. 2013;32(11):1575–83.

    PubMed  Google Scholar 

  27. Mason JC. Takayasu arteritis--advances in diagnosis and management. Nat Rev Rheumatol. 2010;6(7):406–15.

    PubMed  Google Scholar 

  28. Pérez-García CN, Olmos C, Vivas D, Ferrera C, García-Arribas D, Enríquez-Vázquez D, et al. IgG4-aortitis among thoracic aortic aneurysms. Heart. 2019;105(20):1583–9.

    PubMed  Google Scholar 

  29. Perugino CA, Wallace ZS, Meyersohn N, Oliveira G, Stone JR, Stone JH. Large vessel involvement by IgG4-related disease. Medicine. 2016;95(28):e3344.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Roldan CA, Chavez J, Wiest PW, Qualls CR, Crawford MH. Aortic root disease and valve disease associated with ankylosing spondylitis. J Am Coll Cardiol. 1998;32(5):1397–404.

    CAS  PubMed  Google Scholar 

  31. Iskandar A, Thompson PD. A meta-analysis of aortic root size in elite athletes. Circulation. 2013;127(7):791–8.

    PubMed  Google Scholar 

  32. Eccles SR, Banks J, Kumar P. Ascending aortic aneurysm causing hoarse voice: a variant of Ortner’s syndrome. BMJ Case Rep. 2012;2012:bcr2012007111.

    PubMed  PubMed Central  Google Scholar 

  33. Erbel R, Eggebrecht H. Aortic dimensions and the risk of dissection. Heart. 2006;92(1):137–42.

    PubMed  PubMed Central  Google Scholar 

  34. Kim JH, Jang SW, Kim DB, Lee HJ, Kim JG, Kwon BJ, et al. A patient with dysphagia due to an aortic aneurysm. Korean Circ J. 2009;39(6):258–60.

    PubMed  PubMed Central  Google Scholar 

  35. Kumar A, Dutta V, Negi S, Puri GD. Vascular airway compression management in a case of aortic arch and descending thoracic aortic aneurysm. Ann Card Anaesth. 2016;19(3):568–71.

    PubMed  PubMed Central  Google Scholar 

  36. Liddicoat JE, Bekassy SM, Rubio PA, Noon GP, DeBakey ME. Ascending aortic aneurysms. Review of 100 consecutive cases. Circulation. 1975;52(2 Suppl):I202–9.

    CAS  PubMed  Google Scholar 

  37. Najafi H, Dye WS, Javid H, Hunter JA, Goldin MD, Serry C. Aortic insufficiency secondary to aortic root aneurysm or dissection. Arch Surg (Chicago, Ill : 1960). 1975;110(11):1401–7.

    CAS  Google Scholar 

  38. Pabisiak K, Serdynska M, Kaliszczak R, Dutkiewicz G. Ascending aorta aneurysm as a cause of superior vena cava syndrome. Pol Merkur Lekarski. 2014;37(218):104–7.

    PubMed  Google Scholar 

  39. Hahn RT, Roman MJ, Mogtader AH, Devereux RB. Association of aortic dilation with regurgitant, stenotic and functionally normal bicuspid aortic valves. J Am Coll Cardiol. 1992;19(2):283–8.

    CAS  PubMed  Google Scholar 

  40. Pretre R, Von Segesser LK. Aortic dissection. Lancet (London, England). 1997;349(9063):1461–4.

    CAS  Google Scholar 

  41. Sun D, Mehta S. Hemoptysis caused by erosion of thoracic aortic aneurysm. CMAJ. 2010;182(4):E186.

    PubMed  PubMed Central  Google Scholar 

  42. Gerrard AD, Batool S, Isaacs P. Ruptured thoracic aneurysm causing hematemesis. ACG Case Rep J. 2016;3(4):e182.

    PubMed  PubMed Central  Google Scholar 

  43. Fukui T, Saga T, Kawasaki H, Nishioka T. Cardiac tamponade secondary to rupture of a distal aortic arch aneurysm. Jpn J Thorac Cardiovasc Surg. 2002;50(5):227–30.

    PubMed  Google Scholar 

  44. Roman MJ, Devereux RB, Niles NW, Hochreiter C, Kligfield P, Sato N, et al. Aortic root dilatation as a cause of isolated, severe aortic regurgitation. Prevalence, clinical and echocardiographic patterns, and relation to left ventricular hypertrophy and function. Ann Intern Med. 1987;106(6):800–7.

    CAS  PubMed  Google Scholar 

  45. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121(13):e266–369.

    Google Scholar 

  46. Evangelista A, Flachskampf FA, Erbel R, Antonini-Canterin F, Vlachopoulos C, Rocchi G, et al. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur J Echocardiogr. 2010;11(8):645–58.

    PubMed  Google Scholar 

  47. Solomon SD, Wu J, Gillam LD. Essential echocardiography: a companion to Braunwald’s heart disease E-book: Elsevier health sciences. 2017.

  48. Steinberg CR, Archer M, Steinberg I. Measurement of the abdominal aorta after intravenous aortography in health and arteriosclerotic peripheral vascular disease. Am J Roentgenol Radium Therapy, Nucl Med. 1965;95(3):703–8.

    CAS  Google Scholar 

  49. Vasan RS, Larson MG, Benjamin EJ, Levy D. Echocardiographic reference values for aortic root size: the Framingham Heart Study. J Am Soc Echocardiogr. 1995;8(6):793–800.

    CAS  PubMed  Google Scholar 

  50. Goldstein SA, Evangelista A, Abbara S, Arai A, Asch FM, Badano LP, et al. Multimodality imaging of diseases of the thoracic aorta in adults: from the American Society of Echocardiography and the European Association of Cardiovascular Imaging: endorsed by the Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2015;28(2):119–82.

    PubMed  Google Scholar 

  51. Ruggiero M, Lenti ML, Cavallari D, Dicillo CP, Mascolo AR, Musci S, et al. Screening for abdominal aortic aneurysm during transthoracic echocardiography. A prospective study in 1202 consecutive patients at high risk: incidence, correlation with risk factors, feasibility, diagnostic accuracy, and increase in echocardiography time. G Ital Cardiol (Rome). 2006;7(3):217–23.

    Google Scholar 

  52. Vourvouri EC, Poldermans D, Schinkel AF, Sozzi FB, Bax JJ, van Urk H, et al. Abdominal aortic aneurysm screening using a hand-held ultrasound device. “A pilot study”. Eur J Vasc Endovasc Surg. 2001;22(4):352–4.

    CAS  PubMed  Google Scholar 

  53. Patil TA, Nierich A. Transesophageal echocardiography evaluation of the thoracic aorta. Ann Card Anaesth. 2016;19(Supplement):S44–s55.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nierich AP, van Zaane B, Buhre WF, Coddens J, Spanjersberg AJ, Moons KG. Visualization of the distal ascending aorta with A-Mode transesophageal echocardiography. J Cardiothorac Vasc Anesth. 2008;22(5):766–73.

    PubMed  Google Scholar 

  55. Nierich A, Klomp WJ, Peelen L, Bruinsma GBB, Van t Hoff A. O-02 Clinical outcome after pre-incision assessment of aortic atherosclerosis by A-View echocardiography in 5,886 elective cardiac surgery patients. J Cardiothorac Vasc Anesth. 2011;25(3):S1.

    Google Scholar 

  56. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    CAS  PubMed  Google Scholar 

  57. Di Cesare E, Splendiani A, Barile A, Squillaci E, Di Cesare A, Brunese L, et al. CT and MR imaging of the thoracic aorta. Open Med (Warsaw, Poland). 2016;11(1):143–51.

    PubMed Central  Google Scholar 

  58. Litmanovich D, Bankier AA, Cantin L, Raptopoulos V, Boiselle PM. CT and MRI in diseases of the aorta. AJR Am J Roentgenol. 2009;193(4):928–40.

    PubMed  Google Scholar 

  59. Hanneman K, Chan FP, Mitchell RS, Miller DC, Fleischmann D. Pre- and postoperative imaging of the aortic root. Radiographics. 2016;36(1):19–37.

    PubMed  Google Scholar 

  60. Sodickson A, Baeyens PF, Andriole KP, Prevedello LM, Nawfel RD, Hanson R, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology. 2009;251(1):175–84.

    PubMed  Google Scholar 

  61. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. 2001;219(3):828–34.

    CAS  PubMed  Google Scholar 

  62. Gebker R, Gomaa O, Schnackenburg B, Rebakowski J, Fleck E, Nagel E. Comparison of different MRI techniques for the assessment of thoracic aortic pathology: 3D contrast enhanced MR angiography, turbo spin echo and balanced steady state free precession. Int J Cardiovasc Imaging. 2007;23(6):747–56.

    PubMed  Google Scholar 

  63. Nayak KS, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM, Meyer CH. Spiral balanced steady-state free precession cardiac imaging. Magn Reson Med. 2005;53(6):1468–73.

    PubMed  Google Scholar 

  64. Burman ED, Keegan J, Kilner PJ. Aortic root measurement by cardiovascular magnetic resonance: specification of planes and lines of measurement and corresponding normal values. Circulation Cardiovasc Imaging. 2008;1(2):104–13.

    Google Scholar 

  65. Singh P, Almarzooq Z, Salata B, Devereux RB. Role of molecular imaging with positron emission tomographic in aortic aneurysms. J Thorac Dis. 2017;9(Suppl 4):S333–s42.

    PubMed  PubMed Central  Google Scholar 

  66. Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol. 2005;12(3):294–301.

    PubMed  Google Scholar 

  67. Kim J, Song HC. Role of PET/CT in the evaluation of aortic disease. Chonnam Med J. 2018;54(3):143–52.

    PubMed  PubMed Central  Google Scholar 

  68. Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6(12):1250–9.

    PubMed  Google Scholar 

  69. Kim J, Choi KH, Song HC, Kim JT, Park MS, Cho KH. (18)F-FDG PET/CT imaging factors that predict ischaemic stroke in cancer patients. Eur J Nucl Med Mol Imaging. 2016;43(12):2228–35.

    PubMed  Google Scholar 

  70. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50(10):1611–20.

    PubMed  Google Scholar 

  71. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708–11.

    CAS  PubMed  Google Scholar 

  72. Tarkin JM, Joshi FR, Rudd JH. PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol. 2014;11(8):443–57.

    CAS  PubMed  Google Scholar 

  73. Courtois A, Nusgens BV, Hustinx R, Namur G, Gomez P, Somja J, et al. 18F-FDG uptake assessed by PET/CT in abdominal aortic aneurysms is associated with cellular and molecular alterations prefacing wall deterioration and rupture. J Nucl Med. 2013;54(10):1740–7.

    CAS  PubMed  Google Scholar 

  74. Kotze CW, Menezes LJ, Endozo R, Groves AM, Ell PJ, Yusuf SW. Increased metabolic activity in abdominal aortic aneurysm detected by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Eur J Vasc Endovasc Surg. 2009;38(1):93–9.

    CAS  PubMed  Google Scholar 

  75. Reeps C, Essler M, Pelisek J, Seidl S, Eckstein HH, Krause BJ. Increased 18F-fluorodeoxyglucose uptake in abdominal aortic aneurysms in positron emission/computed tomography is associated with inflammation, aortic wall instability, and acute symptoms. J Vasc Surg. 2008;48(2):417–23 discussion 24.

    PubMed  Google Scholar 

  76. Sakalihasan N, Hustinx R, Limet R. Contribution of PET scanning to the evaluation of abdominal aortic aneurysm. Semin Vasc Surg. 2004;17(2):144–53.

    PubMed  Google Scholar 

  77. Takahashi M, Momose T, Kameyama M, Ohtomo K. Abnormal accumulation of [18F]fluorodeoxyglucose in the aortic wall related to inflammatory changes: three case reports. Ann Nucl Med. 2006;20(5):361–4.

    PubMed  Google Scholar 

  78. Tzolos E, Andrews JP, Dweck MR. Aortic valve stenosis-multimodality assessment with PET/CT and PET/MRI. Br J Radiol. 2019:20190688.

  79. Barwick TD, Lyons OT, Mikhaeel NG, Waltham M, O'Doherty MJ. 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size. Eur J Nucl Med Mol Imaging. 2014;41(12):2310–8.

    CAS  PubMed  Google Scholar 

  80. Kotze CW, Groves AM, Menezes LJ, Harvey R, Endozo R, Kayani IA, et al. What is the relationship between 18F-FDG aortic aneurysm uptake on PET/CT and future growth rate? Eur J Nucl Med Mol Imaging. 2011;38(8):1493–9.

    PubMed  Google Scholar 

  81. Marini C, Morbelli S, Armonino R, Spinella G, Riondato M, Massollo M, et al. Direct relationship between cell density and FDG uptake in asymptomatic aortic aneurysm close to surgical threshold: an in vivo and in vitro study. Eur J Nucl Med Mol Imaging. 2012;39(1):91–101.

    PubMed  Google Scholar 

  82. Palombo D, Morbelli S, Spinella G, Pane B, Marini C, Rousas N, et al. A positron emission tomography/computed tomography (PET/CT) evaluation of asymptomatic abdominal aortic aneurysms: another point of view. Ann Vasc Surg. 2012;26(4):491–9.

    PubMed  Google Scholar 

  83. Rinne P, Hellberg S, Kiugel M, Virta J, Li XG, Käkelä M, et al. Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol Imaging Biol. 2016;18(1):99–108.

    CAS  PubMed  Google Scholar 

  84. Gaemperli O, Shalhoub J, Owen DR, Lamare F, Johansson S, Fouladi N, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33(15):1902–10.

    CAS  PubMed  Google Scholar 

  85. Nahrendorf M, Keliher E, Marinelli B, Leuschner F, Robbins CS, Gerszten RE, et al. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler Thromb Vasc Biol. 2011;31(4):750–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bucerius J, Schmaljohann J, Böhm I, Palmedo H, Guhlke S, Tiemann K, et al. Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans--first results. Eur J Nucl Med Mol Imaging. 2008;35(4):815–20.

    PubMed  Google Scholar 

  87. Matter CM, Wyss MT, Meier P, Späth N, von Lukowicz T, Lohmann C, et al. 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol. 2006;26(3):584–9.

    CAS  PubMed  Google Scholar 

  88. Sarda-Mantel L, Alsac JM, Boisgard R, Hervatin F, Montravers F, Tavitian B, et al. Comparison of 18F-fluoro-deoxy-glucose, 18F-fluoro-methyl-choline, and 18F-DPA714 for positron-emission tomography imaging of leukocyte accumulation in the aortic wall of experimental abdominal aneurysms. J Vasc Surg. 2012;56(3):765–73.

    PubMed  Google Scholar 

  89. Tegler G, Estrada S, Hall H, Wanhainen A, Björck M, Sörensen J, et al. Autoradiography screening of potential positron emission tomography tracers for asymptomatic abdominal aortic aneurysms. Ups J Med Sci. 2014;119(3):229–35.

    PubMed  PubMed Central  Google Scholar 

  90. Kitagawa T, Kosuge H, Chang E, James ML, Yamamoto T, Shen B, et al. Integrin-targeted molecular imaging of experimental abdominal aortic aneurysms by (18)F-labeled Arg-Gly-Asp positron-emission tomography. Circulation Cardiovasc Imaging. 2013;6(6):950–6.

    Google Scholar 

  91. Shi S, Orbay H, Yang Y, Graves SA, Nayak TR, Hong H, et al. PET imaging of abdominal aortic aneurysm with 64Cu-labeled anti-CD105 antibody Fab fragment. J Nucl Med. 2015;56(6):927–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JL, Dweck MR, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495.

    PubMed  PubMed Central  Google Scholar 

  93. •• Forsythe RO, Dweck MR, McBride OMB, Vesey AT, Semple SI, Shah ASV, et al. (18)F-sodium fluoride uptake in abdominal aortic aneurysms: the SoFIA(3) study. J Am Coll Cardiol. 2018;71(5):513–23. This study presented a novel approach of using Fluorine-18-NaF PET-CT for identification of abdominal aortic aneurysm disease activity as well as prediction of aneurysm growth and clinical events.

    PubMed  PubMed Central  Google Scholar 

  94. Ishiwata Y, Kaneta T, Nawata S, Hino-Shishikura A, Yoshida K, Inoue T. Quantification of temporal changes in calcium score in active atherosclerotic plaque in major vessels by (18)F-sodium fluoride PET/CT. Eur J Nucl Med Mol Imaging. 2017;44(9):1529–37. This study showed that calcium score progression and cardiovascular disasese risk can be predicted by using 18)F-sodium fluoride in PET/CT.

  95. Robson PM, Dey D, Newby DE, Berman D, Li D, Fayad ZA, et al. MR/PET Imaging of the Cardiovascular System. JACC Cardiovasc Imaging. 2017;10(10 Pt A):1165–79.

    PubMed  PubMed Central  Google Scholar 

  96. Toczek J, Meadows JL, Sadeghi MM. Novel molecular imaging approaches to abdominal aortic aneurysm risk stratification. Circulation Cardiovasc Imaging. 2016;9(1):e003023.

    Google Scholar 

  97. •• Newby D, Forsythe R, McBride O, et al. Aortic wall inflammation predicts abdominal aortic aneurysm expansion, rupture, and need for surgical repair. Circulation. 2017;136(9):787–97. This study defined a novel approach that identifies aortic wall inflammation and predicts rate of abdominal aortic aneurysm growth and clinical outcomes.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ozan Unlu M.D. or Parmanand Singh M.D..

Ethics declarations

Conflict of interest

Ozan Unlu declares that he has no conflict of interest. Parmanand Singh declares that he has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unlu, O., Singh, P. Multimodality Imaging of Aortic Disease. Curr Treat Options Cardio Med 22, 34 (2020). https://doi.org/10.1007/s11936-020-00831-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00831-z

Keywords

Navigation