Skip to main content
Log in

Updates on Fractional Flow Reserve Derived by CT (FFRCT)

  • Imaging (Q Truong, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Fractional flow reserve (FFR) effectively identifies coronary stenoses that are safe to be managed medically. The advent of non-invasive FFR using computed tomography (CT) (FFRCT) datasets has been shown to increase the proportion of patients going to the catheter laboratory and ultimately receiving percutaneous coronary intervention (PCI). This review provides an update on the current status of FFRCT in modern practice and discusses recent applications.

Recent findings

Several studies have reported an association between high-risk plaque features and lower FFRCT values. Furthermore, the concept of delta (Δ) FFR, or translesional gradient, may allow for additional prognostication. Machine learning algorithms have been validated against FFRCT for lesion-specific physiology. Whether FFRCT can predict the effect of different PCI strategies using virtual stenting with reduced order models derived from the computational fluid dynamics simulations is under investigation. These models can quickly recalculate FFRCT post-virtual implant, potentially enabling real-time procedural planning.

Summary

Rapid technological advancement has propelled FFRCT to the forefront of non-invasive assessment of lesion-specific physiology in patients with stable coronary artery disease, increasing the specificity of CT coronary angiography and enriching the catheterization laboratory population. Novel applications such as virtual stenting and machine learning algorithms have the potential to further improve outcomes, but cost and lack of reimbursement in certain healthcare settings are important limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References and Recommended Reading

  1. Pijls NHJ, de Bruyne B, Peels K, van der Voort PH, Bonnier HJRM, Bartunek J, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334:1703–8.

    CAS  PubMed  Google Scholar 

  2. Tonino PA, de Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    CAS  PubMed  Google Scholar 

  3. De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, et al. Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.

    PubMed  Google Scholar 

  4. Zimmermann FM, Omerovic E, Fournier S, Kelbaek H, Johnson NP, Rothenbuhler M, et al. Fractional flow reserve-guided percutaneous coronary intervention vs. medical therapy for patients with stable coronary lesions: meta-analysis of individual patient data. Eur Heart J. 2019;40:180–6.

    PubMed  Google Scholar 

  5. Xaplanteris P, Fournier S, Pijls NHJ, Fearon WF, Barbato E, Tonino PAL, et al. Five-year outcomes with PCI guided by fractional flow reserve. N Engl J Med. 2018;379:250–9.

    PubMed  Google Scholar 

  6. Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2018;40:87–165.

    Google Scholar 

  7. Parikh RV, Liu G, Plomondon ME, Sehested TSG, Hlatky MA, Waldo SW, et al. Utilization and outcomes of measuring fractional flow reserve in patients with stable ischemic heart disease. J Am Coll Cardiol. 2020;75:409–19.

    PubMed  Google Scholar 

  8. Huang AL, Maggiore PL, Brown RA, Turaga M, Reid AB, Merkur J, et al. CT-derived fractional flow reserve (FFRCT): from gatekeeping to roadmapping. Can Assoc Radiol J. 2020;846537119893752.

  9. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: the task force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2019;41:407–77.

    Google Scholar 

  10. National Institute for Health and Care Excellence Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin (update). Clinical Guideline 95 (National Institute for Health and Care Excellence, London). 2016; Accessed March 9th 2020.

  11. De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–17.

    PubMed  Google Scholar 

  12. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58:1989–97.

    PubMed  Google Scholar 

  13. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308:1237–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol. 2014;63:1145–55.

    PubMed  Google Scholar 

  15. Li S, Tang X, Peng L, Luo Y, Dong R, Liu J. The diagnostic performance of CT-derived fractional flow reserve for evaluation of myocardial ischaemia confirmed by invasive fractional flow reserve: a meta-analysis. Clin Radiol. 2015;70:476–86.

    CAS  PubMed  Google Scholar 

  16. Driessen RS, Danad I, Stuijfzand WJ, Raijmakers PG, Schumacher SP, van Diemen PA, et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am Coll Cardiol. 2019;73:161–73.

    PubMed  Google Scholar 

  17. Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J. 2015;36:3359–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Curzen NP, Nolan J, Zaman AG, Nørgaard BL, Rajani R. Does the routine availability of CT-derived FFR influence management of patients with stable chest pain compared to CT angiography alone?: the FFRCT RIPCORD study. JACC Cardiovasc Imaging. 2016;9:1188–94.

    PubMed  Google Scholar 

  19. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362:886–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hlatky MA, Saxena A, Koo BK, Erglis A, Zarins CK, Min JK. Projected costs and consequences of computed tomography-determined fractional flow reserve. Clin Cardiol. 2013;36:743–8.

    PubMed  PubMed Central  Google Scholar 

  21. Patel MR, Nørgaard BL, Fairbairn TA, Nieman K, Akasaka T, Berman DS, et al. 1-year impact on medical practice and clinical outcomes of FFRCT. The ADVANCE Registry. 2020;13:97–105.

    Google Scholar 

  22. Lu MT, Ferencik M, Roberts RS, Lee KL, Ivanov A, Adami E, et al. Noninvasive FFR derived from coronary CT angiography: management and outcomes in the PROMISE trial. JACC Cardiovasc Imaging. 2017;10:1350–8.

    PubMed  PubMed Central  Google Scholar 

  23. Park HB, Heo R, OH B, Cho I, Gransar H, Nakazato R, et al. Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve. JACC Cardiovasc Imaging. 2015;8:1–10.

    PubMed  PubMed Central  Google Scholar 

  24. Gaur S, Ovrehus KA, Dey D, Leipsic J, Botker HE, Jensen JM, et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J. 2016;37:1220–7.

    PubMed  PubMed Central  Google Scholar 

  25. Tesche C, De Cecco CN, Caruso D, Baumann S, Renker M, Mangold S, et al. Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. J Cardiovasc Comput Tomogr. 2016;10:199–206.

    PubMed  Google Scholar 

  26. Ahmadi A, Leipsic J, Ovrehus KA, Gaur S, Bagiella E, Ko B, et al. Lesion-specific and vessel-related determinants of fractional flow reserve beyond coronary artery stenosis. JACC Cardiovasc Imaging. 2018;11:521–30.

    PubMed  Google Scholar 

  27. Ovrehus KA, Gaur S, Leipsic J, Jensen JM, Dey D, Botker HE, et al. CT-based total vessel plaque analyses improves prediction of hemodynamic significance lesions as assessed by fractional flow reserve in patients with stable angina pectoris. J Cardiovasc Comput Tomogr. 2018;12:344–9.

    PubMed  Google Scholar 

  28. Doris MK, Otaki Y, Arnson Y, Tamarappoo B, Goeller M, Gransar H, et al. Non-invasive fractional flow reserve in vessels without severe obstructive stenosis is associated with coronary plaque burden. J Cardiovasc Comput Tomogr. 2018;12:379–84.

    PubMed  Google Scholar 

  29. Nozue T, Takamura T, Fukui K, Hibi K, Kishi S, Michishita I. Plaque volume and morphology are associated with fractional flow reserve derived from coronary computed tomography angiography. J Atheroscler Thromb. 2019;26:697–704.

    PubMed  PubMed Central  Google Scholar 

  30. Feuchtner GM, Barbieri F, Langer C, Beyer C, Widmann G, Friedrich GJ, et al. Non obstructive high-risk plaque but not calcified by coronary CTA, and the G-score predict ischemia. J Cardiovasc Comput Tomogr. 2019;13:305–14.

    PubMed  Google Scholar 

  31. Lee JM, Choi KH, Koo BK, Park J, Kim J, Hwang D, et al. Prognostic implications of plaque characteristics and stenosis severity in patients with coronary artery disease. J Am Coll Cardiol. 2019;73:2413–24.

    PubMed  Google Scholar 

  32. Yang DH, Kang SJ, Koo HJ, Kweon J, Kang JW, Lim TH, et al. Incremental value of subtended myocardial mass for identifying FFR-verified ischemia using quantitative CT angiography: comparison with quantitative coronary angiography and CT-FFR. JACC Cardiovasc Imaging. 2019;12:707–17.

    PubMed  Google Scholar 

  33. Driessen RS, de Waard GA, Stuijfzand WJ, Raijmakers PG, Danad I, Bom MJ, et al. Adverse plaque characteristics relate more strongly with hyperemic fractional flow reserve and instantaneous wave-free ratio than with resting instantaneous wave-free ratio. JACC Cardiovasc Imaging. 2020;13:746–56.

    PubMed  Google Scholar 

  34. Driessen RS, Stuijfzand WJ, Raijmakers PG, Danad I, Min JK, Leipsic JA, et al. Effect of plaque burden and morphology on myocardial blood flow and fractional flow reserve. J Am Coll Cardiol. 2018;71:499–509.

    PubMed  Google Scholar 

  35. Lee JM, Choi G, Koo BK, Hwang D, Park J, Zhang J, et al. Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics. JACC Cardiovasc Imaging. 2019;12:1032–43.

    PubMed  Google Scholar 

  36. Park J, Lee JM, Koo BK, Choi G, Hwang D, Rhee TM, et al. Relevance of anatomical, plaque, and hemodynamic characteristics of non-obstructive coronary lesions in the prediction of risk for acute coronary syndrome. Eur Radiol. 2019;29:6119–28.

    PubMed  Google Scholar 

  37. Tesche C, Gray HN. Machine learning and deep neural networks applications in coronary flow assessment: the case of computed tomography fractional flow reserve. J Thorac Imaging. 2020;35:S66–71.

    PubMed  Google Scholar 

  38. Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol. 2016;121:42–52.

    PubMed  Google Scholar 

  39. Coenen A, Kim Y-H, Kruk M, Tesche C, De Geer J, Kurata A, et al. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography–based fractional flow reserve: result from the MACHINE Consortium. Circ Cardiovasc Imaging. 2018;11:e007217.

    PubMed  Google Scholar 

  40. Kruk M, Wardziak Ł, Demkow M, Pleban W, Pręgowski J, Dzielińska Z, et al. Workstation-based calculation of CTA-based FFR for intermediate stenosis. JACC Cardiovasc Imaging. 2016;9:690–9.

    PubMed  Google Scholar 

  41. Tesche C, Vliegenthart R, Duguay TM, De Cecco CN, Albrecht MH, De Santis D, et al. Coronary computed tomographic angiography-derived fractional flow reserve for therapeutic decision making. Am J Cardiol. 2017;120:2121–7.

    PubMed  Google Scholar 

  42. Röther J, Moshage M, Dey D, Schwemmer C, Tröbs M, Blachutzik F, et al. Comparison of invasively measured FFR with FFR derived from coronary CT angiography for detection of lesion-specific ischemia: results from a PC-based prototype algorithm. J Cardiovasc Comput Tomogr. 2018;12:101–7.

    PubMed  Google Scholar 

  43. Tesche C, De Cecco CN, Baumann S, Renker M, McLaurin TW, Duguay TM, et al. Coronary CT angiography–derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology. 2018;288:64–72.

    PubMed  Google Scholar 

  44. von Knebel Doeberitz PL, De Cecco CN, Schoepf UJ, Duguay TM, Albrecht MH, van Assen M, et al. Coronary CT angiography–derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia. Eur Radiol. 2019;29:2378–87.

    Google Scholar 

  45. Yu M, Lu Z, Li W, Wei M, Yan J, Zhang J. CT morphological index provides incremental value to machine learning based CT-FFR for predicting hemodynamically significant coronary stenosis. Int J Cardiol. 2018;265:256–61.

    PubMed  Google Scholar 

  46. Hu X, Yang M, Han L, Du Y. Diagnostic performance of machine-learning-based computed fractional flow reserve (FFR) derived from coronary computed tomography angiography for the assessment of myocardial ischemia verified by invasive FFR. Int J Cardiovasc Imaging. 2018;34:1987–96.

    PubMed  Google Scholar 

  47. Zhou F, Wang YN, Schoepf UJ, Tesche C, Tang CX, Zhou CS, et al. Diagnostic performance of machine learning based CT-FFR in detecting ischemia in myocardial bridging and concomitant proximal atherosclerotic disease. Can J Cardiol. 2019;35:1523–33.

    PubMed  Google Scholar 

  48. Kumamaru KK, Fujimoto S, Otsuka Y, Kawasaki T, Kawaguchi Y, Kato E, et al. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography. European Heart Journal - Cardiovascular Imaging. 2019.

  49. Kurata A, Fukuyama N, Hirai K, Kawaguchi N, Tanabe Y, Okayama H, et al. On-site computed tomography-derived fractional flow reserve using a machine-learning algorithm―clinical effectiveness in a retrospective multicenter cohort―. Circ J. 2019;83:1563–71.

    CAS  PubMed  Google Scholar 

  50. Wang Z-Q, Zhou Y-J, Zhao Y-X, Shi D-M, Liu Y-Y, Liu W, et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography. Journal of Geriatric Cardiology: JGC. 2019;16:42.

    PubMed  PubMed Central  Google Scholar 

  51. Tang CX, Wang YN, Zhou F, Schoepf UJ, van Assen M, Stroud RE, et al. Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: a multi-center study and meta-analysis. Eur J Radiol. 2019;116:90–7.

    PubMed  Google Scholar 

  52. Xu PP, Li JH, Zhou F, Di Jiang M, Zhou CS, Lu MJ, et al. The influence of image quality on diagnostic performance of a machine learning–based fractional flow reserve derived from coronary CT angiography. Eur Radiol. 2020:1–10.

  53. Baumann S, Renker M, Schoepf UJ, De Cecco CN, Coenen A, De Geer J, et al. Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve-results from the MACHINE Registry. Eur J Radiol. 2019;119:108657.

    PubMed  Google Scholar 

  54. Ahmadi A, Stone GW, Leipsic J, Serruys PW, Shaw L, Hecht H, et al. Association of coronary stenosis and plaque morphology with fractional flow reserve and outcomes. JAMA Cardiol. 2016;1:350–7.

    PubMed  Google Scholar 

  55. Nous FM, Coenen A, Boersma E, Kim Y-H, Kruk MB, Tesche C, et al. Comparison of the diagnostic performance of coronary computed tomography angiography-derived fractional flow reserve in patients with versus without diabetes mellitus (from the MACHINE Consortium). Am J Cardiol. 2019;123:537–43.

    PubMed  Google Scholar 

  56. Tesche C, Otani K, De Cecco CN, Coenen A, De Geer J, Kruk M, et al. Influence of coronary calcium on diagnostic performance of machine learning CT-FFR: results from MACHINE Registry. JACC Cardiovasc Imaging. 2020;13:760–70.

    PubMed  Google Scholar 

  57. Duguay TM, Tesche C, Vliegenthart R, De Cecco CN, Lin H, Albrecht MH, et al. Coronary computed tomographic angiography-derived fractional flow reserve based on machine learning for risk stratification of non-culprit coronary narrowings in patients with acute coronary syndrome. Am J Cardiol. 2017;120:1260–6.

    PubMed  Google Scholar 

  58. van Assen M, De Cecco C, Eid M, von Knebel Doeberitz P, Scarabello M, Lavra F, et al. Prognostic value of CT myocardial perfusion imaging and CT-derived fractional flow reserve for major adverse cardiac events in patients with coronary artery disease. J Cardiovasc Comput Tomogr. 2019;13:26–33.

    PubMed  Google Scholar 

  59. von Knebel Doeberitz PL, De Cecco CN, Schoepf UJ, Albrecht MH, van Assen M, De Santis D, et al. Impact of coronary computerized tomography angiography-derived plaque quantification and machine-learning computerized tomography fractional flow reserve on adverse cardiac outcome. Am J Cardiol. 2019;124:1340–8.

    Google Scholar 

  60. Fournier S, Ciccarelli G, Toth GG, Milkas A, Xaplanteris P, Tonino PA, et al. Association of improvement in fractional flow reserve with outcomes, including symptomatic relief, after percutaneous coronary intervention. JAMA Cardiol. 2019;4:370–4.

    PubMed  PubMed Central  Google Scholar 

  61. Choi KH, Lee JM, Koo B-K, Nam C-W, Shin E-S, Doh J-H, et al. Prognostic implication of functional incomplete revascularization and residual functional SYNTAX score in patients with coronary artery disease. JACC Cardiovasc Interv. 2018;11:237–45.

    PubMed  Google Scholar 

  62. Blanke P, Weir-McCall JR, Achenbach S, Delgado V, Hausleiter J, Jilaihawi H, et al. Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): an expert consensus document of the Society of Cardiovascular Computed Tomography. JACC Cardiovasc Imaging. 2019;12:1–24.

    PubMed  Google Scholar 

  63. Collet C, Onuma Y, Andreini D, Sonck J, Pompilio G, Mushtaq S, et al. Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease. Eur Heart J. 2018;39:3689–98.

    PubMed  PubMed Central  Google Scholar 

  64. Kim K-H, Doh J-H, Koo B-K, Min JK, Erglis A, Yang H-M, et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve. JACC Cardiovasc Interv. 2014;7:72–8.

    PubMed  Google Scholar 

  65. Modi BN, Sankaran S, Kim HJ, Ellis H, Rogers C, Taylor CA, et al. Predicting the physiological effect of revascularization in serially diseased coronary arteries: clinical validation of a novel CT coronary angiography–based technique. Circ Cardiovasc Interv. 2019;12:e007577.

    PubMed  PubMed Central  Google Scholar 

  66. Ihdayhid AR, White A, Ko B. Assessment of serial coronary stenoses with noninvasive computed tomography-derived fractional flow reserve and treatment planning using a novel virtual stenting application. JACC Cardiovasc Interv. 2017;10:e223–5.

    PubMed  Google Scholar 

  67. Van Belle E, Raposo L, Baptista S, Vincent F, Porouchani S, Cosenza A, et al. Benefits of obtaining information for planning with noninvasive FFRCT prior to invasive evaluation-the BOWIE study: EuroPCR; 2019.

  68. Kim HS, Tonino PA, De Bruyne B, Yong AS, Tremmel JA, Pijls NH, et al. The impact of sex differences on fractional flow reserve-guided percutaneous coronary intervention: a FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) substudy. JACC Cardiovasc Interv. 2012;5:1037–42.

    PubMed  Google Scholar 

  69. Kim CH, Koo B-K, Lee JM, Shin E-S, Park J, Choi KH, et al. Influence of sex on relationship between total anatomical and physiologic disease burdens and their prognostic implications in patients with coronary artery disease. J Am Heart Assoc. 2019;8:e011002.

    PubMed  PubMed Central  Google Scholar 

  70. Mangion K, Adamson PD, Williams MC, Hunter A, Pawade T, Shah ASV, et al. Sex associations and computed tomography coronary angiography-guided management in patients with stable chest pain. Eur Heart J. 2020;41:1337–45.

    PubMed  Google Scholar 

  71. Hlatky MA, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, et al. Quality-of-life and economic outcomes of assessing fractional flow reserve with computed tomography angiography: PLATFORM. J Am Coll Cardiol. 2015;66:2315–23.

    PubMed  Google Scholar 

  72. Pontone G, Weir-McCall JR, Baggiano A, Del Torto A, Fusini L, Guglielmo M, et al. Determinants of rejection rate for coronary CT angiography fractional flow reserve analysis. Radiology. 2019;292:597–605.

    PubMed  Google Scholar 

  73. Abbara S, Arbab-Zadeh A, Callister TQ, Desai MY, Mamuya W, Thomson L, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2009;3:190–204.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jaydeep Halankar, Tim Fonte, and HeartFlow, Inc., Redwood City, CA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Brown MD.

Ethics declarations

Conflict of Interest

Dr Leipsic has been a consultant for and holds stock in Circle Cardiovascular Imaging and HeartFlow and provides core lab services for NIH, Edwards Lifesciences, Neovasc, Abbott and Medtronic.

Dr Leipsic has also been a member of the Speakers Bureau for GE Healthcare and Edwards LifeSciences, received research support from GE Healthcare and grant support from the Canadian Institutes of Health Research (CIHR), National Institutes of Health (NIH), GE Healthcare and HeartFlow.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreedharan, S., Zekry, S.B., Leipsic, J.A. et al. Updates on Fractional Flow Reserve Derived by CT (FFRCT). Curr Treat Options Cardio Med 22, 17 (2020). https://doi.org/10.1007/s11936-020-00816-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00816-y

Keywords

Navigation