The Demystification of Secondary Hypertension: Diagnostic Strategies and Treatment Algorithms

Abstract

Purpose of review

Hypertension is one of the most common conditions encountered in the primary care setting, affecting 32–46% of people. While essential or primary hypertension is the most common form of the disease, secondary hypertension is quite prevalent, occurring in 10–20% of patients with hypertension. Accurately diagnosing secondary hypertension is a challenging and often time-consuming process that requires considerable expertise and effort. However, once the secondary etiology is identified, the patient benefits profoundly from a potentially curative treatment that may lead to significant improvements in quality of life, morbidity, and mortality.

Recent findings

Common causes of secondary hypertension include medication-induced hypertension, renal parenchymal disease, renovascular hypertension, obstructive sleep apnea, and primary aldosteronism. Other rarer forms include mineralocorticoid-driven hypertension or its mimics, as well as hypercortisolism and pheochromocytoma. Although complex, standard protocols have emerged for investigation, diagnosis, and treatment of these conditions.

Summary

The current review aims to elucidate the many causes of secondary hypertension and describe their respective prevalence, clinical presentation, screening, diagnosis, treatment, and follow-up. By demystifying secondary hypertension, it is hoped that this disease will be more easily identified and treated so that the associated cardiovascular morbidity and end-organ damage may be mitigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

ACEi :

Angiotensin-converting enzyme inhibitor

ACTH :

Adrenocorticotropic hormone

AME :

Apparent mineralocorticoid excess

ARB :

Angiotensin receptor blocker

ARR :

Aldosterone-to-renin ratio

AVS :

Adrenal vein sampling

CAH :

Congenital adrenal hyperplasia

CCB :

Calcium channel blocker

CKD :

Chronic kidney disease

CPAP :

Continuous positive airway pressure

DST :

Overnight dexamethasone suppression testing

ENaC :

Epithelial sodium channels

FH :

Familial hyperaldosteronism

FMD :

Fibromuscular dysplasia

GRA :

Glucocorticoid-remediable hypertension

MAO :

Monoamine oxidase

MRA :

Mineralocorticoid receptor antagonist

NSAIDs :

Nonsteroidal anti-inflammatory drugs

OSA :

Obstructive sleep apnea

PA :

Primary aldosteronism

PAC :

Plasma aldosterone concentration

PRA :

Plasma renin activity

RAAS :

Renin-angiotensin-aldosterone system

PSV :

Peak systolic velocities

RAR :

Renal-to-aortic ratio

RAS :

Renal artery stenosis

VEGF :

Vascular endothelial growth factor

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    •• Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:e13–e115. The latest hypertension guidelines, a crucial reference on evlauation and management for both primary and secondary forms of hypertension.

    CAS  PubMed  Google Scholar 

  2. 2.

    Mulatero P, Monticone S, Burrello J, Veglio F, Williams TA, Funder J. Guidelines for primary aldosteronism: uptake by primary care physicians in Europe. J Hypertens. 2016;34:2253–7.

    CAS  PubMed  Google Scholar 

  3. 3.

    • Grossman E, Messerli FH. Drug-induced hypertension: an unappreciated cause of secondary hypertension. Am J Med. 2012;125:14–22. A helpful review of medication-induced hypertension, which is probably one of the most common causes for resistant or secondary hypertension seen in practice.

    CAS  PubMed  Google Scholar 

  4. 4.

    Morgan T, Anderson A. The effect of nonsteroidal anti-inflammatory drugs on blood pressure in patients treated with different antihypertensive drugs. J Clin Hypertens (Greenwich). 2003;5:53–7.

    CAS  Google Scholar 

  5. 5.

    Krum H, Swergold G, Curtis SP, Kaur A, Wang H, Smugar SS, et al. Factors associated with blood pressure changes in patients receiving diclofenac or etoricoxib: results from the MEDAL study. J Hypertens. 2009;27:886–93.

    CAS  PubMed  Google Scholar 

  6. 6.

    Hoskova L, Malek I, Kopkan L, Kautzner J. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension. Physiol Res. 2017;66:167–80.

    CAS  PubMed  Google Scholar 

  7. 7.

    Hoorn EJ, Walsh SB, McCormick JA, Zietse R, Unwin RJ, Ellison DH. Pathogenesis of calcineurin inhibitor-induced hypertension. J Nephrol. 2012;25:269–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Tutakhel OAZ, Moes AD, Valdez-Flores MA, Kortenoeven MLA, Vrie MVD, Jelen S, et al. NaCl cotransporter abundance in urinary vesicles is increased by calcineurin inhibitors and predicts thiazide sensitivity. PLoS One. 2017;12:e0176220.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Moes AD, Hesselink DA, van den Meiracker AH, Zietse R, Hoorn EJ. Chlorthalidone versus amlodipine for hypertension in kidney transplant recipients treated with tacrolimus: a randomized crossover trial. Am J Kidney Dis. 2017;69:796–804.

    CAS  PubMed  Google Scholar 

  10. 10.

    Oskarsson A, Ulleras E, Ohlsson Andersson A. Acetaminophen increases aldosterone secretion while suppressing cortisol and androgens: a possible link to increased risk of hypertension. Am J Hypertens. 2016;29:1158–64.

    CAS  PubMed  Google Scholar 

  11. 11.

    Noordzij M, Uiterwaal CS, Arends LR, Kok FJ, Grobbee DE, Geleijnse JM. Blood pressure response to chronic intake of coffee and caffeine: a meta-analysis of randomized controlled trials. J Hypertens. 2005;23:921–8.

    CAS  PubMed  Google Scholar 

  12. 12.

    Mesas AE, Leon-Munoz LM, Rodriguez-Artalejo F, Lopez-Garcia E. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis. Am J Clin Nutr. 2011;94:1113–26.

    CAS  PubMed  Google Scholar 

  13. 13.

    Horowitz B, Miskulin D, Zager P. Epidemiology of hypertension in CKD. Adv Chronic Kidney Dis. 2015;22:88–95.

    PubMed  Google Scholar 

  14. 14.

    System USRD: 2013 USRDS annual data report: epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 2013.

  15. 15.

    Bakris GL, Sorrentino M. J.: Hypertension: A Companion to Braunwald's Heart Disease edn Third Edition. Philadelphia, PA: Elsevier; 2018.

    Google Scholar 

  16. 16.

    Neumann J, Ligtenberg G, Klein II, Koomans HA, Blankestijn PJ. Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int. 2004;65:1568–76.

    PubMed  Google Scholar 

  17. 17.

    Passauer J, Pistrosch F, Bussemaker E, Lassig G, Herbrig K, Gross P. Reduced agonist-induced endothelium-dependent vasodilation in uremia is attributable to an impairment of vascular nitric oxide. J Am Soc Nephrol. 2005;16:959–65.

    CAS  PubMed  Google Scholar 

  18. 18.

    Hamrahian SM. Management of hypertension in patients with chronic kidney disease. Curr Hypertens Rep. 2017;19:43.

    PubMed  Google Scholar 

  19. 19.

    • Bowles NP, Thosar SS, Herzig MX, Shea SA. Chronotherapy for hypertension. Curr Hypertens Rep. 2018;20:97. An excellent review summarizing latest evidence for chronotherapy and the correct timing of antihypertensives.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Parikh SA, Shishehbor MH, Gray BH, White CJ, Jaff MR. SCAI expert consensus statement for renal artery stenting appropriate use. Catheter Cardiovasc Interv. 2014;84:1163–71.

    PubMed  Google Scholar 

  21. 21.

    Textor SC, Lerman L. Renovascular hypertension and ischemic nephropathy. Am J Hypertens. 2010;23:1159–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lerman LO, Textor SC. Renal Vascular Disease edn 1st Edition. London: Springer; 2014.

    Google Scholar 

  23. 23.

    Zierler RE, Bergelin RO, Davidson RC, Cantwell-Gab K, Polissar NL, Strandness DE Jr. A prospective study of disease progression in patients with atherosclerotic renal artery stenosis. Am J Hypertens. 1996;9:1055–61.

    CAS  PubMed  Google Scholar 

  24. 24.

    Krumme B. Renal Doppler sonography--update in clinical nephrology. Nephron Clin Pract. 2006;103:c24–8.

    PubMed  Google Scholar 

  25. 25.

    • Prince M, Tafur JD, White CJ. When and how should we revascularize patients with atherosclerotic renal artery stenosis? JACC Cardiovasc Interv. 2019;12:505–17. Review of latest criteria for revascularization in renal artery stenosis, a clinically challenging area.

    PubMed  Google Scholar 

  26. 26.

    Klein AJ, Jaff MR, Gray BH, Aronow HD, Bersin RM, Diaz-Sandoval LJ, et al. SCAI appropriate use criteria for peripheral arterial interventions: An update. Catheter Cardiovasc Interv. 2017;90:E90–e110.

    PubMed  Google Scholar 

  27. 27.

    Bax L, Woittiez AJ, Kouwenberg HJ, Mali WP, Buskens E, Beek FJ, et al. Stent placement in patients with atherosclerotic renal artery stenosis and impaired renal function: a randomized trial. Ann Intern Med. 2009;150:840–8,w150-841.

    PubMed  Google Scholar 

  28. 28.

    Wheatley K, Ives N, Gray R, Kalra PA, Moss JG, Baigent C, et al. Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med. 2009;361:1953–62.

    PubMed  Google Scholar 

  29. 29.

    Cooper CJ, Murphy TP, Cutlip DE, Jamerson K, Henrich W, Reid DM, et al. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med. 2014;370:13–22.

    CAS  PubMed  Google Scholar 

  30. 30.

    Slovut DP, Olin JW. Fibromuscular dysplasia. N Engl J Med. 2004;350:1862–71.

    CAS  PubMed  Google Scholar 

  31. 31.

    Pepin JL, Borel AL, Tamisier R, Baguet JP, Levy P, Dauvilliers Y. Hypertension and sleep: overview of a tight relationship. Sleep Med Rev. 2014;18:509–19.

    PubMed  Google Scholar 

  32. 32.

    Valaiyapathi B, Calhoun DA. Role of mineralocorticoid receptors in obstructive sleep apnea and metabolic syndrome. Curr Hypertens Rep. 2018;20:23.

    PubMed  Google Scholar 

  33. 33.

    Furlan SF, Braz CV, Lorenzi-Filho G, Drager LF. Management of hypertension in obstructive sleep apnea. Curr Cardiol Rep. 2015;17:108.

    PubMed  Google Scholar 

  34. 34.

    Drager LF, Genta PR, Pedrosa RP, Nerbass FB, Gonzaga CC, Krieger EM, et al. Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am J Cardiol. 2010;105:1135–9.

    PubMed  Google Scholar 

  35. 35.

    Pedrosa RP, Drager LF, Gonzaga CC, Sousa MG, de Paula LK, Amaro AC, et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension. 2011;58:811–7.

    CAS  PubMed  Google Scholar 

  36. 36.

    Martinez-Garcia MA, Navarro-Soriano C, Torres G, Barbe F, Caballero-Eraso C, Lloberes P, et al. Beyond resistant hypertension. Hypertension. 2018;72:618–24.

    CAS  PubMed  Google Scholar 

  37. 37.

    Barcelo A, Pierola J, Esquinas C, de la Pena M, Arque M, Alonso-Fernandez A, et al. Relationship between aldosterone and the metabolic syndrome in patients with obstructive sleep apnea hypopnea syndrome: effect of continuous positive airway pressure treatment. PLoS One. 2014;9:e84362.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gonzaga CC, Gaddam KK, Ahmed MI, Pimenta E, Thomas SJ, Harding SM, et al. Severity of obstructive sleep apnea is related to aldosterone status in subjects with resistant hypertension. J Clin Sleep Med. 2010;6:363–8.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Pratt-Ubunama MN, Nishizaka MK, Boedefeld RL, Cofield SS, Harding SM, Calhoun DA. Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension. Chest. 2007;131:453–9.

    CAS  PubMed  Google Scholar 

  40. 40.

    Barbe F, Duran-Cantolla J, Sanchez-de-la-Torre M, Martinez-Alonso M, Carmona C, Barcelo A, et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. Jama. 2012;307:2161–8.

    CAS  PubMed  Google Scholar 

  41. 41.

    McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375:919–31.

    PubMed  Google Scholar 

  42. 42.

    Yu J, Zhou Z, McEvoy RD, Anderson CS, Rodgers A, Perkovic V, et al. Association of positive airway pressure with cardiovascular events and death in adults with sleep apnea: a systematic review and meta-analysis. Jama. 2017;318:156–66.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Bailly S, Destors M, Grillet Y, Richard P, Stach B, Vivodtzev I, et al. Obstructive sleep apnea: a cluster analysis at time of diagnosis. PLoS One. 2016;11:e0157318.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bonsignore MR. Beneficial effects of CPAP treatment in high-risk subgroups of OSA patients: some evidence, at Last. EClinicalMedicine. 2018;2-3:9–10.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Abuzaid AS, Al Ashry HS, Elbadawi A, Ld H, Saad M, Elgendy IY, et al. Meta-analysis of cardiovascular outcomes with continuous positive airway pressure therapy in patients with obstructive sleep apnea. Am J Cardiol. 2017;120:693–9.

    PubMed  Google Scholar 

  46. 46.

    Martinez-Garcia MA, Capote F, Campos-Rodriguez F, Lloberes P, Diaz de Atauri MJ, Somoza M, Masa JF, Gonzalez M, Sacristan L, Barbe F, et al.: Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial. Jama 2013, 310:2407-2415.

    PubMed  Google Scholar 

  47. 47.

    de Oliveira AC, Martinez D, Massierer D, Gus M, Goncalves SC, Ghizzoni F, et al. The antihypertensive effect of positive airway pressure on resistant hypertension of patients with obstructive sleep apnea: a randomized, double-blind, clinical trial. Am J Respir Crit Care Med. 2014;190:345–7.

    PubMed  Google Scholar 

  48. 48.

    Varounis C, Katsi V, Kallikazaros IE, Tousoulis D, Stefanadis C, Parissis J, et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: a systematic review and meta-analysis. Int J Cardiol. 2014;175:195–8.

    PubMed  Google Scholar 

  49. 49.

    Hu X, Fan J, Chen S, Yin Y, Zrenner B. The role of continuous positive airway pressure in blood pressure control for patients with obstructive sleep apnea and hypertension: a meta-analysis of randomized controlled trials. J Clin Hypertens (Greenwich). 2015;17:215–22.

    CAS  Google Scholar 

  50. 50.

    Muxfeldt ES, Margallo V, Costa LM, Guimaraes G, Cavalcante AH, Azevedo JC, et al. Effects of continuous positive airway pressure treatment on clinic and ambulatory blood pressures in patients with obstructive sleep apnea and resistant hypertension: a randomized controlled trial. Hypertension. 2015;65:736–42.

    CAS  PubMed  Google Scholar 

  51. 51.

    Patil SP, Ayappa IA, Caples SM, Kimoff RJ, Patel SR, Harrod CG. Treatment of adult obstructive sleep apnea with positive airway pressure: an American Academy of Sleep Medicine Systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med. 2019;15:301–34.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Warchol-Celinska E, Prejbisz A, Kadziela J, Florczak E, Januszewicz M, Michalowska I, et al. Renal denervation in resistant hypertension and obstructive sleep apnea: randomized proof-of-concept phase II trial. Hypertension. 2018;72:381–90.

    CAS  PubMed  Google Scholar 

  53. 53.

    Kario K, Bhatt DL, Kandzari DE, Brar S, Flack JM, Gilbert C, et al. Impact of renal denervation on patients with obstructive sleep apnea and resistant hypertension- insights from the SYMPLICITY HTN-3 trial. Circ J. 2016;80:1404–12.

    PubMed  Google Scholar 

  54. 54.

    Chirinos JA, Gurubhagavatula I, Teff K, Rader DJ, Wadden TA, Townsend R, et al. CPAP, weight loss, or both for obstructive sleep apnea. N Engl J Med. 2014;370:2265–75.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Jain S, Gurubhagavatula I, Townsend R, Kuna ST, Teff K, Wadden TA, et al. Effect of CPAP, weight loss, or CPAP plus weight loss on central hemodynamics and arterial stiffness. Hypertension. 2017;70:1283–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Gaddam K, Pimenta E, Thomas SJ, Cofield SS, Oparil S, Harding SM, et al. Spironolactone reduces severity of obstructive sleep apnoea in patients with resistant hypertension: a preliminary report. J Hum Hypertens. 2010;24:532–7.

    CAS  PubMed  Google Scholar 

  57. 57.

    Yang L, Zhang H, Cai M, Zou Y, Jiang X, Song L, et al. Effect of spironolactone on patients with resistant hypertension and obstructive sleep apnea. Clin Exp Hypertens. 2016;38:464–8.

    CAS  PubMed  Google Scholar 

  58. 58.

    Krasinska B, Miazga A, Cofta S, Szczepaniak-Chichel L, Trafas T, Krasinski Z, et al. Effect of eplerenone on the severity of obstructive sleep apnea and arterial stiffness in patients with resistant arterial hypertension. Pol Arch Med Wewn. 2016;126:330–9.

    PubMed  Google Scholar 

  59. 59.

    Prejbisz A, Kolodziejczyk-Kruk S, Lenders JWM, Januszewicz A. Primary aldosteronism and obstructive sleep apnea: is this a bidirectional relationship? Horm Metab Res. 2017;49:969–76.

    CAS  PubMed  Google Scholar 

  60. 60.

    Kasai T, Bradley TD, Friedman O, Logan AG. Effect of intensified diuretic therapy on overnight rostral fluid shift and obstructive sleep apnoea in patients with uncontrolled hypertension. J Hypertens. 2014;32:673–80.

    CAS  PubMed  Google Scholar 

  61. 61.

    Conn JW. Presidential address. I. Painting background. II. Primary aldosteronism, a new clinical syndrome. J Lab Clin Med. 1955;45:3–17.

    CAS  PubMed  Google Scholar 

  62. 62.

    Ardhanari S, Kannuswamy R, Chaudhary K, Lockette W, Whaley-Connell A. Mineralocorticoid and apparent mineralocorticoid syndromes of secondary hypertension. Adv Chronic Kidney Dis. 2015;22:185–95.

    PubMed  Google Scholar 

  63. 63.

    Mosso L, Carvajal C, Gonzalez A, Barraza A, Avila F, Montero J, et al. Primary aldosteronism and hypertensive disease. Hypertension. 2003;42:161–5.

    CAS  PubMed  Google Scholar 

  64. 64.

    Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol. 2017;69:1811–20.

    PubMed  Google Scholar 

  65. 65.

    Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol. 2006;48:2293–300.

    CAS  PubMed  Google Scholar 

  66. 66.

    •• Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916 A thorough and readable society guideline on investigation and management of primary aldosteronism, with pointers to primary sources.

    CAS  PubMed  Google Scholar 

  67. 67.

    Fogari R, Preti P, Zoppi A, Rinaldi A, Fogari E, Mugellini A. Prevalence of primary aldosteronism among unselected hypertensive patients: a prospective study based on the use of an aldosterone/renin ratio above 25 as a screening test. Hypertens Res. 2007;30:111–7.

    PubMed  Google Scholar 

  68. 68.

    Maiolino G, Rossitto G, Bisogni V, Cesari M, Seccia TM, Plebani M, et al. Quantitative value of aldosterone-renin ratio for detection of aldosterone-producing adenoma: the aldosterone-renin ratio for primary aldosteronism (AQUARR) study. J Am Heart Assoc. 2017;6.

  69. 69.

    Nanba K, Tamanaha T, Nakao K, Kawashima ST, Usui T, Tagami T, et al. Confirmatory testing in primary aldosteronism. J Clin Endocrinol Metab. 2012;97:1688–94.

    CAS  PubMed  Google Scholar 

  70. 70.

    Song Y, Yang S, He W, Hu J, Cheng Q, Wang Y, et al. Confirmatory tests for the diagnosis of primary aldosteronism: a prospective diagnostic accuracy study. Hypertension. 2018;71:118–24.

    CAS  PubMed  Google Scholar 

  71. 71.

    Giacchetti G, Ronconi V, Lucarelli G, Boscaro M, Mantero F. Analysis of screening and confirmatory tests in the diagnosis of primary aldosteronism: need for a standardized protocol. J Hypertens. 2006;24:737–45.

    CAS  PubMed  Google Scholar 

  72. 72.

    Young WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol (Oxf). 2007;66:607–18.

    CAS  Google Scholar 

  73. 73.

    Williams TA, Burrello J, Sechi LA, Fardella CE, Matrozova J, Adolf C, et al. Computed tomography and adrenal venous sampling in the diagnosis of unilateral primary aldosteronism. Hypertension. 2018;72:641–9.

    CAS  PubMed  Google Scholar 

  74. 74.

    Kempers MJ, Lenders JW, van Outheusden L, van der Wilt GJ, Schultze Kool LJ, Hermus AR, et al. Systematic review: diagnostic procedures to differentiate unilateral from bilateral adrenal abnormality in primary aldosteronism. Ann Intern Med. 2009;151:329–37.

    PubMed  Google Scholar 

  75. 75.

    Ladurner R, Sommerey S, Buechner S, Dietz A, Degenhart C, Hallfeldt K, et al. Accuracy of adrenal imaging and adrenal venous sampling in diagnosing unilateral primary aldosteronism. Eur J Clin Invest. 2017;47:372–7.

    PubMed  Google Scholar 

  76. 76.

    Dekkers T, Prejbisz A, Kool LJS, Groenewoud H, Velema M, Spiering W, et al. Adrenal vein sampling versus CT scan to determine treatment in primary aldosteronism: an outcome-based randomised diagnostic trial. Lancet Diabetes Endocrinol. 2016;4:739–46.

    PubMed  Google Scholar 

  77. 77.

    Rossi GP, Funder JW. Adrenal venous sampling versus computed tomographic scan to determine treatment in primary aldosteronism (The SPARTACUS Trial): A Critique. Hypertension. 2017;69:396–7.

    CAS  PubMed  Google Scholar 

  78. 78.

    Yang Y, Reincke M, Williams TA. Treatment of unilateral PA by adrenalectomy: potential reasons for incomplete biochemical cure. Exp Clin Endocrinol Diabetes. 2019;127:100–8.

    CAS  PubMed  Google Scholar 

  79. 79.

    Muth A, Ragnarsson O, Johannsson G, Wangberg B. Systematic review of surgery and outcomes in patients with primary aldosteronism. Br J Surg. 2015;102:307–17.

    CAS  PubMed  Google Scholar 

  80. 80.

    Conzo G, Tartaglia E, Gambardella C, Esposito D, Sciascia V, Mauriello C, et al. Minimally invasive approach for adrenal lesions: Systematic review of laparoscopic versus retroperitoneoscopic adrenalectomy and assessment of risk factors for complications. Int J Surg. 2016;28(Suppl 1):S118–23.

    PubMed  Google Scholar 

  81. 81.

    Satoh M, Maruhashi T, Yoshida Y, Shibata H. Systematic review of the clinical outcomes of mineralocorticoid receptor antagonist treatment versus adrenalectomy in patients with primary aldosteronism. Hypertens Res. 2019;42:817–24.

    CAS  PubMed  Google Scholar 

  82. 82.

    Rossi GP, Maiolino G, Flego A, Belfiore A, Bernini G, Fabris B, et al. Adrenalectomy lowers incident atrial fibrillation in primary aldosteronism patients at long term. Hypertension. 2018;71:585–91.

    CAS  PubMed  Google Scholar 

  83. 83.

    Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Renal outcomes in medically and surgically treated primary aldosteronism. Hypertension. 2018;72:658–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Chen YY, Lin YH, Huang WC, Chueh E, Chen L, Yang SY, et al. Adrenalectomy improves the long-term risk of end-stage renal disease and mortality of primary aldosteronism. J Endocr Soc. 2019;3:1110–26.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Kunzel HE, Apostolopoulou K, Pallauf A, Gerum S, Merkle K, Schulz S, et al. Quality of life in patients with primary aldosteronism: gender differences in untreated and long-term treated patients and associations with treatment and aldosterone. J Psychiatr Res. 2012;46:1650–4.

    PubMed  Google Scholar 

  86. 86.

    Ahmed AH, Gordon RD, Sukor N, Pimenta E, Stowasser M. Quality of life in patients with bilateral primary aldosteronism before and during treatment with spironolactone and/or amiloride, including a comparison with our previously published results in those with unilateral disease treated surgically. J Clin Endocrinol Metab. 2011;96:2904–11.

    CAS  PubMed  Google Scholar 

  87. 87.

    Velema M, Dekkers T, Hermus A, Timmers H, Lenders J, Groenewoud H, et al. Quality of life in primary aldosteronism: a comparative effectiveness study of adrenalectomy and medical treatment. J Clin Endocrinol Metab. 2018;103:16–24.

    PubMed  Google Scholar 

  88. 88.

    Vorselaars WMCM, Nell S, Postma EL, Zarnegar R, Drake FT, Duh Q-Y, et al. Clinical outcomes after unilateral adrenalectomy for primary aldosteronism. JAMA Surg. 2019;e185842.

    PubMed  Google Scholar 

  89. 89.

    Hannon MJ, Sze WC, Carpenter R, Parvanta L, Matson M, Sahdev A, et al. Clinical outcomes following unilateral adrenalectomy in patients with primary aldosteronism. Qjm. 2017;110:277–81.

    CAS  PubMed  Google Scholar 

  90. 90.

    Katabami T, Fukuda H, Tsukiyama H, Tanaka Y, Takeda Y, Kurihara I, et al. Clinical and biochemical outcomes after adrenalectomy and medical treatment in patients with unilateral primary aldosteronism. J Hypertens. 2019;37:1513–20.

    CAS  PubMed  Google Scholar 

  91. 91.

    Williams TA, Lenders JWM, Mulatero P, Burrello J, Rottenkolber M, Adolf C, et al. Outcomes after adrenalectomy for unilateral primary aldosteronism: an international consensus on outcome measures and analysis of remission rates in an international cohort. Lancet Diabetes Endocrinol. 2017;5:689–99.

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Burrello J, Burrello A, Stowasser M, Nishikawa T, Quinkler M, Prejbisz A, et al. The primary aldosteronism surgical outcome score for the prediction of clinical outcomes after adrenalectomy for unilateral primary aldosteronism. Ann Surg. 2019.

  93. 93.

    Nieman LK. Diagnosis of Cushing's syndrome in the modern era. Endocrinol Metab Clin North Am. 2018;47:259–73.

    PubMed  Google Scholar 

  94. 94.

    • Young WF, Calhoun DA, Lenders JWM, Stowasser M, Textor SC. Screening for endocrine hypertension: an Endocrine Society scientific statement. Endocrine Reviews. 2017;38:103–22 A summary review of case detection for a majority of the endocrine causes of hypertension.

    Google Scholar 

  95. 95.

    Ceccato F, Boscaro M. Cushing's syndrome: screening and diagnosis. High Blood Press Cardiovasc Prev. 2016;23:209–15.

    CAS  PubMed  Google Scholar 

  96. 96.

    Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of Cushing's syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2008;93:1526–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Pivonello R, Iacuaniello D, Simeoli C, Martino MCD, Colao A. Physiopathology, diagnosis, and treatment of hypercortisolism. In: Hypothalamic-Pituitary Diseases. Endocrinology. Cham: Springer; 2018.

    Google Scholar 

  98. 98.

    Isidori AM, Graziadio C, Paragliola RM, Cozzolino A, Ambrogio AG, Colao A, et al. The hypertension of Cushing's syndrome: controversies in the pathophysiology and focus on cardiovascular complications. J Hypertens. 2015;33:44–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Gupta S, Melendez J, Khanna A. Deoxycorticosterone producing tumor as a cause of resistant hypertension. Case Rep Med. 2010;2010:372719.

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Nicolaides NC, Charmandari E. Chrousos syndrome: from molecular pathogenesis to therapeutic management. Eur J Clin Invest. 2015;45:504–14.

    CAS  PubMed  Google Scholar 

  101. 101.

    Funder JW. Apparent mineralocorticoid excess. J Steroid Biochem Mol Biol. 2017;165:151–3.

    CAS  PubMed  Google Scholar 

  102. 102.

    Farese RV Jr, Biglieri EG, Shackleton CH, Irony I, Gomez-Fontes R. Licorice-induced hypermineralocorticoidism. N Engl J Med. 1991;325:1223–7.

    PubMed  Google Scholar 

  103. 103.

    Palermo M, Armanini D, Delitala G. Grapefruit juice inhibits 11beta-hydroxysteroid dehydrogenase in vivo, in man. Clin Endocrinol (Oxf). 2003;59:143–4.

    Google Scholar 

  104. 104.

    Sanchez-Nino MD, Ortiz A. Unravelling drug-induced hypertension: molecular mechanisms of aldosterone-independent mineralocorticoid receptor activation by posaconazole. Clin Kidney J. 2018;11:688–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Stavropoulos K, Sotiriadis A, Patoulias D, Imprialos K, Dampali R, Athyros V, et al. Pseudohyperaldosteronism due to mumijo consumption during pregnancy: a licorice-like syndrome. Gynecol Endocrinol. 2018;34:1019–21.

    CAS  PubMed  Google Scholar 

  106. 106.

    Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289:119–23.

    CAS  PubMed  Google Scholar 

  107. 107.

    Monticone S, Losano I, Tetti M, Buffolo F, Veglio F, Mulatero P. Diagnostic approach to low-renin hypertension. Clin Endocrinol (Oxf). 2018;89:385–96.

    Google Scholar 

  108. 108.

    Concistre A, Grillo A, La Torre G, Carretta R, Fabris B, Petramala L, et al. Ambulatory blood pressure monitoring-derived short-term blood pressure variability in primary hyperparathyroidism. Endocrine. 2018;60:129–37.

    CAS  PubMed  Google Scholar 

  109. 109.

    Kalla A, Krishnamoorthy P, Gopalakrishnan A, Garg J, Patel NC, Figueredo VM. Primary hyperparathyroidism predicts hypertension: results from the National Inpatient Sample. Int J Cardiol. 2017;227:335–7.

    CAS  PubMed  Google Scholar 

  110. 110.

    Brili S, Tousoulis D, Antoniades C, Vasiliadou C, Karali M, Papageorgiou N, et al. Effects of ramipril on endothelial function and the expression of proinflammatory cytokines and adhesion molecules in young normotensive subjects with successfully repaired coarctation of aorta: a randomized cross-over study. J Am Coll Cardiol. 2008;51:742–9.

    CAS  PubMed  Google Scholar 

  111. 111.

    Canniffe C, Ou P, Walsh K, Bonnet D, Celermajer D. Hypertension after repair of aortic coarctation--a systematic review. Int J Cardiol. 2013;167:2456–61.

    PubMed  Google Scholar 

  112. 112.

    Lillitos PJ, Nassar MS, Tibby SM, Simmonds J, Salih C, Austin C, et al. Is the medical treatment for arterial hypertension after primary aortic coarctation repair related to age at surgery? A retrospective cohort study. Cardiol Young. 2017;27:1701–7.

    PubMed  Google Scholar 

  113. 113.

    Brown ML, Burkhart HM, Connolly HM, Dearani JA, Cetta F, Li Z, et al. Coarctation of the aorta: lifelong surveillance is mandatory following surgical repair. J Am Coll Cardiol. 2013;62:1020–5.

    PubMed  Google Scholar 

  114. 114.

    Bocelli A, Favilli S, Pollini I, Bini RM, Ballo P, Chiappa E, et al. Prevalence and long-term predictors of left ventricular hypertrophy, late hypertension, and hypertensive response to exercise after successful aortic coarctation repair. Pediatr Cardiol. 2013;34:620–9.

    PubMed  Google Scholar 

  115. 115.

    Nunes I, Santos T, Tavares J, Correia L, Coutinho J, Nogueira JMB, et al. Secondary hypertension due to a juxtaglomerular cell tumor. J Am Soc Hypertens. 2018;12:637–40.

    PubMed  Google Scholar 

  116. 116.

    Pedicini V, Gennaro N, Muglia R, Saita A, Casale P, Negro A, et al. Renin-dependent hypertension cured with percutaneous radiofrequency ablation. J Hypertens. 2019;37:653–6.

    CAS  PubMed  Google Scholar 

  117. 117.

    Gunawardane PTK, Grossman A. Phaeochromocytoma and Paraganglioma. Adv Exp Med Biol. 2017;956:239–59.

    PubMed  Google Scholar 

  118. 118.

    Baguet JP, Hammer L, Mazzuco TL, Chabre O, Mallion JM, Sturm N, et al. Circumstances of discovery of phaeochromocytoma: a retrospective study of 41 consecutive patients. Eur J Endocrinol. 2004;150:681–6.

    CAS  PubMed  Google Scholar 

  119. 119.

    • Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99:1915–42 Latest society guidelines on diagnosis and management of pheochromocytomas.

    CAS  PubMed  Google Scholar 

  120. 120.

    Pappachan JM, Tun NN, Arunagirinathan G, Sodi R, Hanna FWF. Pheochromocytomas and hypertension. Curr Hypertens Rep. 2018;20:3.

    PubMed  Google Scholar 

  121. 121.

    Plouin PF, Amar L, Dekkers OM, Fassnacht M, Gimenez-Roqueplo AP, Lenders JW, et al. European Society of Endocrinology Clinical Practice Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma. Eur J Endocrinol. 2016;174:G1–g10.

    CAS  PubMed  Google Scholar 

  122. 122.

    Guerrero MA, Schreinemakers JM, Vriens MR, Suh I, Hwang J, Shen WT, et al. Clinical spectrum of pheochromocytoma. J Am Coll Surg. 2009;209:727–32.

    PubMed  Google Scholar 

  123. 123.

    Lu Y, Li P, Gan W, Zhao X, Shen S, Feng W, et al. Clinical and pathological characteristics of hypertensive and normotensive adrenal pheochromocytomas. Exp Clin Endocrinol Diabetes. 2016;124:372–9.

    CAS  PubMed  Google Scholar 

  124. 124.

    Yu R, Nissen NN, Bannykh SI. Cardiac complications as initial manifestation of pheochromocytoma: frequency, outcome, and predictors. Endocr Pract. 2012;18:483–92.

    PubMed  Google Scholar 

  125. 125.

    Darr R, Kuhn M, Bode C, Bornstein SR, Pacak K, Lenders JWM, et al. Accuracy of recommended sampling and assay methods for the determination of plasma-free and urinary fractionated metanephrines in the diagnosis of pheochromocytoma and paraganglioma: a systematic review. Endocrine. 2017;56:495–503.

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Casey R, Griffin TP, Wall D, Dennedy MC, Bell M, O'Shea PM. Screening for phaeochromocytoma and paraganglioma: impact of using supine reference intervals for plasma metanephrines with samples collected from fasted/seated patients. Ann Clin Biochem. 2017;54:170–3.

    CAS  PubMed  Google Scholar 

  127. 127.

    Osinga TE, Kema IP, Kerstens MN, de Jong WH, van Faassen M, Dullaart RP, et al. No influence of antihypertensive agents on plasma free metanephrines. Clin Biochem. 2016;49:1368–71.

    CAS  PubMed  Google Scholar 

  128. 128.

    Niculescu DA, Ismail G, Poiana C. Plasma free metanephrine and normetanephrine levels are increased in patients with chronic kidney disease. Endocr Pract. 2014;20:139–44.

    PubMed  Google Scholar 

  129. 129.

    Eisenhofer G, Huysmans F, Pacak K, Walther MM, Sweep FC, Lenders JW. Plasma metanephrines in renal failure. Kidney Int. 2005;67:668–77.

    CAS  PubMed  Google Scholar 

  130. 130.

    Yu R, Wei M. False positive test results for pheochromocytoma from 2000 to 2008. Exp Clin Endocrinol Diabetes. 2010;118:577–85.

    CAS  PubMed  Google Scholar 

  131. 131.

    Galati SJ, Said M, Gospin R, Babic N, Brown K, Geer EB, et al. The Mount Sinai clinical pathway for the management of pheochromocytoma. Endocr Pract. 2015;21:368–82.

    PubMed  Google Scholar 

  132. 132.

    Majtan B, Zelinka T, Rosa J, Petrak O, Kratka Z, Strauch B, et al. Long-term effect of adrenalectomy on cardiovascular remodeling in patients with pheochromocytoma. J Clin Endocrinol Metab. 2017;102:1208–17.

    PubMed  Google Scholar 

  133. 133.

    Hamidi O, Young WF Jr, Iniguez-Ariza NM, Kittah NE, Gruber L, Bancos C, et al. Malignant pheochromocytoma and paraganglioma: 272 patients over 55 years. J Clin Endocrinol Metab. 2017;102:3296–305.

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Yu R, Nissen NN, Dhall D, Phillips E. Diagnosis and management of pheochromocytoma in an academic hospital 3 years after formation of a pheochromocytoma interest group. Endocr Pract. 2011;17:356–62.

    PubMed  Google Scholar 

  135. 135.

    Yu R, Nissen NN, Chopra P, Dhall D, Phillips E, Wei M. Diagnosis and treatment of pheochromocytoma in an academic hospital from 1997 to 2007. Am J Med. 2009;122:85–95.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jamie S. Hirsch MD, MA, MSB.

Ethics declarations

Conflict of Interest

Jamie S. Hirsch and Susana Hong each declare no potential \conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vascular Disease

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hirsch, J.S., Hong, S. The Demystification of Secondary Hypertension: Diagnostic Strategies and Treatment Algorithms. Curr Treat Options Cardio Med 21, 90 (2019). https://doi.org/10.1007/s11936-019-0790-8

Download citation

Keywords

  • Secondary hypertension
  • Endocrine hypertension
  • Drug-induced hypertension
  • Renovascular hypertension
  • Renal artery stenosis
  • Obstructive sleep apnea
  • Primary aldosteronism
  • Mineralocorticoid
  • Cushing’s syndrome
  • Pheochromocytoma