Leadless Pacemakers: Recent and Future Developments

  • Anne Kroman
  • Basil Saour
  • Jordan M. PrutkinEmail author
Arrhythmia (R Kabra, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Arrhythmia


Purpose of review

Leadless pacemakers were developed to reduce complications associated with transvenous pacemaker implant and long-term follow-up. Since initial market release, however, there have been registry and single-center reports documenting improvements in implant technique, reduced complication rates, and new patient populations studied.

Recent findings

Most studies have demonstrated a further reduction in complication rates and safe implant in those on continuous anticoagulation. Perforation rates are decreasing but still occur and risk factors include BMI < 20 kg/m2, age ≥ 85 years, females, history of heart failure, indication not including atrial fibrillation, and chronic lung disease. Device infections are exceedingly rare, even in those undergoing infected transvenous devices at the same time.


For appropriate patients, leadless pacing is a safe and reasonable option, especially if atrial-based sensing or pacing is not needed. Future iterations may include VDD pacing, atrial pacing, dual-chamber pacing, biventricular pacing, and device-device communication.


Leadless pacemaker Pacemaker Complications Pacemaker implantation 


Compliance with Ethical Standards

Conflict of Interest

The author declares that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Mond HG, Proclemer A. The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009--a World Society of Arrhythmia’s project. Pacing Clin Electrophysiol. 2011;34(8):1013–27.CrossRefPubMedGoogle Scholar
  2. 2.
    Spickler JW, Rasor NS, Kezdi P, Misra SN, Robins KE, LeBoeuf C. Totally self-contained intracardiac pacemaker. J Electrocardiol. 1970;3(3–4):325–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Reddy VY, Exner DV, Cantillon DJ, Doshi R, Bunch TJ, Tomassoni GF, et al. Percutaneous implantation of an entirely intracardiac leadless pacemaker. N Engl J Med. 2015;373(12):1125–35.CrossRefPubMedGoogle Scholar
  4. 4.
    •• Reynolds D, Duray GZ, Omar R, Soejima K, Neuzil P, Zhang S, et al. A leadless intracardiac transcatheter pacing system. N Eng J Med. 2016;374(6):533–41 This is the study which led to FDA approval of the Micra pacemaker, describing the initial cohort, efficacy, and safety.Google Scholar
  5. 5.
    Omdahl P, Eggen MD, Bonner MD, Iaizzo PA, Wika K. Right ventricular anatomy can accommodate multiple Micra transcatheter pacemakers. Pacing Clin Electrophysiol. 2016;39(4):393–7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Grubman E, Ritter P, Ellis CR, Giocondo M, Augostini R, Neuzil P, et al. To retrieve, or not to retrieve: system revisions with the Micra transcatheter pacemaker. Heart Rhythm. 2017;14(12):1801–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Lakkireddy D, Knops R, Atwater B, Neuzil P, Ip J, Gonzalez E, et al. A worldwide experience of the management of battery failures and chronic device retrieval of the Nanostim leadless pacemaker. Heart Rhythm. 2017;14(12):1756–63.CrossRefPubMedGoogle Scholar
  8. 8.
    Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay. Circulation. 2018:CIR0000000000000628. doi:
  9. 9.
    Roberts PR, Pepper C, Rinaldi CA, Bates MGD, Thornley A, Somani R, et al. The use of a single chamber leadless pacemaker for the treatment of cardioinhibitory vasovagal syncope. Int J Cardiol Heart Vasc. 2019;23:100349.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Isath A, Padmanabhan D, Naksuk N, Kella D, Friedman D. Leadless pacemaker used as long-term temporary therapy in Lyme carditis with high-grade atrioventricular block. Europace. 2019;21(1):8.CrossRefPubMedGoogle Scholar
  11. 11.
    El-Chami MF, Clementy N, Garweg C, Omar R, Duray GZ, Gornick CC, et al. Leadless pacemaker implantation in hemodialysis patients: experience with the micra transcatheter pacemaker. JACC Clin Electrophysiol. 2019;5(2):162–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Franzil J, Rytlewski J. Successful implantation of a leadless pacemaker in a patient with an IVC filter. Pacing Clin Electrophysiol. 2018;41(3):328–30.CrossRefPubMedGoogle Scholar
  13. 13.
    Saleem-Talib S, van Driel VJ, Chaldoupi SM, Nikolic T, van Wessel H, Borleffs CJW, et al. Leadless pacing: going for the jugular. Pacing Clin Electrophysiol. 2019;42(4):395–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Antonio RS, Chipa-Ccasani F, Apolo J, Linhart M, Trotta O, Pujol-Lopez M, et al. Management of anticoagulation in patients undergoing leadless pacemaker implantation. Heart Rhythm. 2019.
  15. 15.
    Kiani S, Black GB, Rao B, Thakkar N, Massad C, Patel AV, et al. Outcomes of Micra leadless pacemaker implantation with uninterrupted anticoagulation. J Cardiovasc Electrophysiol. 2019;30:1313–8. Scholar
  16. 16.
    • Duray GZ, Ritter P, El-Chami M, Narasimhan C, Omar R, Tolosana JM, et al. Long-term performance of a transcatheter pacing system: 12-month results from the Micra transcatheter pacing study. Heart Rhythm. 2017;14(5):702–9 The authors report mid-term follow-up of patients from the initial Micra TPS study which led to FDA approval, showing continued efficacy and safety at 12 monhts.CrossRefPubMedGoogle Scholar
  17. 17.
    Mont L, Cunnane R, El-Chami MF, Roberts PR, Steffel J, Soejima K, et al. Risk factors for cardiac perforation/effusion in leadless pacemaker patients: experience with the Micra transcatheter pacemaker [abstract]. Heart Rhythm. 2018;18:S119.Google Scholar
  18. 18.
    Roberts PR, Clementy N, Al Samadi F, Garweg C, Martinez-Sande JL, Iacopino S, et al. A leadless pacemaker in the real-world setting: the Micra transcatheter pacing system post-approval registry. Heart Rhythm. 2017;14(9):1375–9.CrossRefPubMedGoogle Scholar
  19. 19.
    El-Chami MF, Al-Samadi F, Clementy N, Garweg C, Martinez-Sande JL, Piccini JP, et al. Updated performance of the Micra transcatheter pacemaker in the real-world setting: a comparison to the investigational study and a transvenous historical control. Heart Rhythm. 2018;15(12):1800–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Hai JJ, Fang J, Tam CC, Wong CK, Un KC, Siu CW, et al. Safety and feasibility of a midseptal implantation technique of a leadless pacemaker. Heart Rhythm. 2019;16(6):896–902.CrossRefPubMedGoogle Scholar
  21. 21.
    Koay A, Khelae S, Wei KK, Muhammad Z, Mohd Ali R, Omar R. Treating an infected transcatheter pacemaker system via percutaneous extraction. HeartRhythm Case Rep. 2016;2(4):360–2.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zucchelli G, Barletta V, Della Tommasina V, Viani S, Parollo M, Mazzocchetti L, et al. Micra pacemaker implant after cardiac implantable electronic device extraction: feasibility and long-term outcomes. Europace. 2019;21:1229–36. Scholar
  23. 23.
    Kypta A, Blessberger H, Kammler J, Lambert T, Lichtenauer M, Brandstaetter W, et al. Leadless cardiac pacemaker implantation after lead extraction in patients with severe device infection. J Cardiovasc Electrophysiol. 2016;27(9):1067–71.CrossRefPubMedGoogle Scholar
  24. 24.
    •• El-Chami MF, Johansen JB, Zaidi A, Faerestrand S, Reynolds D, Garcia-Seara J, et al. Leadless pacemaker implant in patients with pre-existing infections: results from the Micra post approval registry. J Cardiovasc Electrophysiol. 2019;30(4):569–74 This sub-study from the Micra Post Approval Registry demonstrated that it is safe to use a leadless pacemaker in those with a prior device infection, even in those who undergo transvenous extraction in the same procedure as leadless pacemaker implant.CrossRefPubMedGoogle Scholar
  25. 25.
    Afzal MR, Daoud EG, Cunnane R, Mulpuru SK, Koay A, Hussain A, et al. Techniques for successful early retrieval of the Micra transcatheter pacing system: a worldwide experience. Heart Rhythm. 2018;15(6):841–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Kypta A, Blessberger H, Kammler J, Lichtenauer M, Lambert T, Silye R, et al. First autopsy description of changes 1 year after implantation of a leadless cardiac pacemaker: unexpected ingrowth and severe chronic inflammation. Can J Cardiol. 2016;32(12):1578 e1–2.CrossRefPubMedGoogle Scholar
  27. 27.
    Kiani S, Merchant FM, El-Chami MF. Extraction of a 4-year-old leadless pacemaker with a tine-based fixation. Heart Rhythm Case Reports. 2019;5:424–425.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chinitz L, Ritter P, Khelae SK, Iacopino S, Garweg C, Grazia-Bongiorni M, et al. Accelerometer-based atrioventricular synchronous pacing with a ventricular leadless pacemaker: results from the Micra atrioventricular feasibility studies. Heart Rhythm. 2018;15(9):1363–71.CrossRefPubMedGoogle Scholar
  29. 29.
    Bereuter L, Gysin M, Kueffer T, Kucera M, Niederhauser T, Fuhrer J, et al. Leadless dual-chamber pacing: a novel communication method for wireless pacemaker synchronization. JACC Basic Transl Sci. 2018;3(6):813–23.PubMedGoogle Scholar
  30. 30.
    Tjong FVY, Koop BE. The modular cardiac rhythm management system: the EMPOWER leadless pacemaker and the EMBLEM subcutaneous ICD. Herzschrittmacherther Elektrophysiol. 2018;29(4):355–61.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Montemerlo E, Pozzi M, Santini F, Piazzi E, Rovaris G. First in man fully leadless transvenous CRT-P with a transseptal implant of WISE-CRT® system and Micra® PM. Pacing Clin Electrophysiol. 2019.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Cardiology, Section of ElectrophysiologyUniversity of WashingtonSeattleUSA

Personalised recommendations